The Earth's global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth's near-surface conductivity ranges from 10 −7 S m −1 (for poorly conducting rocks) to 10 −2 S m −1 (for clay or wet limestone), with a mean value of 3.2 S m −1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10 −14 S m −1 just above the surface to 10 −7 S m −1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron-neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. M.J. Rycroft ( ) CAESAR Consultancy,
Properties of positive and negative leaders developing in air gaps ranging from 4 to 10 m that were subjected to 100/7,500‐μs voltage impulses were examined using a two‐frame, high‐speed video camera with image enhancement. Abrupt extension (stepping) that culminated in a bright and structured corona streamer burst was observed for both negative (expected for the “classical” stepping process) and positive (expected for the so‐called restrike process) leaders. Selected high‐quality images of five negative and four positive leaders with pronounced corona streamer bursts are presented here. The morphology of corona streamer bursts was essentially independent of polarity. Streamer bursts exhibiting nearly spherical symmetry were observed. For the four positive leaders, the newly added channel sections (steps) were almost straight and had lengths ranging from about 50 to over 120 cm. For the five negative leaders, most of the steps were curved and their 2‐D lengths were some tens of centimeters. It is generally thought that positive leaders in both long sparks and lightning extend continuously or exhibit optically unresolvable steps whose length is comparable to the leader tip size (1 cm or less) and that for sparks only when the absolute humidity is relatively high (>10 g/m3 or so) or voltage rise time is relatively long (around 1 ms or more) can larger steps occur. In this study, both modes of propagation for different branches of the same positive leader were observed.
[1] Computer simulations on transient luminous emissions in the mesosphere and lower ionosphere have been performed for realistic lightning modelings with fast-varying current surges (M components) superimposed on the lightning continuing current (CC). The algorithm used here is an electromagnetic (EM) code, which enables us to estimate self-consistently the reduced electric field, electron density, conductivity, and luminosity as a function of space and time by solving the Maxwell equations. It is found that M components in the CC with small amplitudes, but with a fast-varying EM effect, can initiate or enhance the occurrence of sprites. Even for a return stroke (RS) without CC, subsequent high-frequency current variations (like M components) are found to lead to dramatic changes in the sprite occurrence. The physics underlying these changes is studied by means of, e.g., temporal and spatial variations of luminosity, electron density, and conductivity. As the conclusion, the RS is a fundamental agency for spites, but high-frequency variations as EM effects exhibit an additional essential influence on sprite occurrence. These computational results are used to offer some useful ideas concerning the unsolved problems of sprites and halos, including polarity asymmetry, long-delay characteristics, and morphological shapes of sprites.
An advanced 3‐D numerical model of lightning development is presented. The key features of the model include the probabilistic branching, bidirectional propagation, nonzero internal electric field, simultaneous growth of multiple branches, physical timing, channel decay, and, for the first time, probabilistic propagation field threshold. The new model can be used for computing electrical parameters of individual branches, including conductivity, current, and longitudinal electric field, each as a function of time, in different parts of the discharge tree. For illustrative purposes, the model was applied to studying the occurrence of lightning flashes of different type depending on the cloud charge structure, with emphasis on the lower positive charge region (LPCR). We demonstrated with the new model that the presence of relatively large (excessive) LPCR can prevent the occurrence of negative CG flashes by “blocking” the progression of descending negative leader from reaching ground. The blocking effect of excessive LPCR was found to occur when the vertical component of electric field near the cloud bottom was negative (downward directed). Further, we showed that significant reduction or absence of LPCR can eliminate the possibility of negative CG flashes and lead to normal‐polarity IC flashes instead. The model predicts the polarity‐asymmetry, which suggests that the amount of collected charge depends not only on the number of branches but also on the dynamics of their conductivity (lifetime) and the local cloud charge density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.