The uremic syndrome is characterized by an accumulation of uremic toxins due to inadequate kidney function. The European Uremic Toxin (EUTox) Work Group has listed 90 compounds considered to be uremic toxins. Sixty-eight have a molecular weight less than 500 Da, 12 exceed 12,000 Da, and 10 have a molecular weight between 500 and 12,000 Da. Twenty-five solutes (28%) are protein bound. The kinetics of urea removal is not representative of other molecules such as protein-bound solutes or the middle molecules, making Kt/V misleading. Clearances of urea, even in well-dialyzed patients, amount to only one-sixth of physiological clearance. In contrast to native kidney function, the removal of uremic toxins in dialysis is achieved by a one-step membrane-based process and is intermittent. The resulting sawtooth plasma concentrations of uremic toxins contrast with the continuous function of native kidneys, which provides constant solute clearances and mass removal rates. Our increasing knowledge of uremic toxins will help guide future treatment strategies to remove them.
Background: An abnormal serum phosphate concentration is common in acute renal failure patients, with a reported incidence of 65–80%. Phosphate removal and kinetics during intermittent hemodialysis (IHD) have been investigated, but there is no information on its kinetics during slow low-efficiency dialysis (SLED) and continuous renal replacement therapy (CRRT). Methods: Eight IHD, 8 SLED, and 10 continuous venovenous hemofiltration (CVVH) patients with a residual renal clearance of <4.0 ml/min were studied during a single treatment to evaluate phosphate removal and kinetics. CVVH was studied the first 24 h after initiation. Dialysis/replacement fluid contained no phosphate. Kt/V, clearance of urea (Ku), inorganic phosphate (Kp) and solute removal was determined by direct dialysate quantification (DDQ). Results: Kp recorded with the three techniques were: IHD, 126.9 ± 18.4 ml/min; SLED, 58.0 ± 15.8 ml/min, and CVVH, 31.5 ± 6.0 ml/min. However, in shorter dialysis treatment the total removal of phosphate was significantly lower than in longer dialysis (IHD, 29.9 ± 7.7 mmol; SLED, 37.6 ± 9.6 mmol; CVVH, 66.7 ± 18.9 mmol, p = 0.001). The duration of treatment is the only factor determining phosphate removal (r = 0.7, p < 0.0001 by linear correlation model). Like IHD, phosphate kinetics during SLED could not be explained by the two-pool kinetic model, and the rebound of phosphate extended beyond 1 h after dialysis. Rebound, however, is less marked than in short dialysis. Conclusion: These results are reliable evidence about amount of phosphate removal and behavior of intradialytic phosphate kinetics in renal failure patients undergoing different dialysis modalities. These data will help clinicians plan phosphate supplementation and treatment intensity.
The sepsis syndrome is the most common cause of acute renal failure and multiple organ dysfunction in critically ill subjects and continues to have an alarmingly high mortality. Normal immune homeostasis is interrupted by a complex storm of inflammatory mediators responsible for the deleterious effects. Extracorporeal blood purification techniques can confer benefits in sepsis by proven non-specific removal of these mediators (pro- or anti-inflammatory), and provide a logical and adequate approach to treat this syndrome. High volume hemofiltration (HVHF) has had the most dramatic effect conferring benefits in hemodynamics, reduction in vasopressor doses and improvement in survival. “Pulse HVHF” is the latest approach which may offer the most efficient results: a daily schedule of 6–8 hours followed by standard CVVH. This paper describes the rationale and potential of this technique. Reliability and tolerance of this technique and biological effects are described.
The correct surname is reprinted above, with apologies to the Author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.