8-Chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-acetylhydrazide (1, SC-19220) has been previously reported by us and others to be a PGE2 antagonist selective for the EP1 receptor subtype with antinociceptive activities. Analogs of SC-19220, in which the acetyl moiety has been replaced with pyridylpropionyl groups and their homologs, have been synthesized as illustrated by compounds 13 and 29. These and other members of this series have been shown to be efficacious analgesics and PGE2 antagonists of the EP1 subtype. This report discusses the structure activity relationships within this series.
The 5-tetrazole amide of L-N(6)-(1-iminoethyl)lysine (L-NIL), L-N(6)-(1-iminoethyl)lysine 5-tetrazole amide (1), has been prepared and evaluated. In contrast to L-NIL, 1 is a stable, nonhygroscopic, crystalline solid. Unlike L-NIL, 1 has minimal inhibitory activity in vitro on human inducible nitric oxide synthase (iNOS). However, it is rapidly converted in vivo to L-NIL and produces dose-dependent inhibition of iNOS in acute and chronic models of inflammation in the rodent with efficacy comparable to L-NIL. In addition, both 1 and L-NIL exhibit significant and comparable in vivo selectivity for the inhibition of iNOS vs endothelial NOS. Doses approximately 80-fold greater than those that inhibited inflammation do not elevate systemic blood pressure. In summary, both the physical properties and the pharmacological profile of 1 make it an ideal molecule for preclinical and clinical studies on the role of selective iNOS inhibitors in mediating inflammatory disease processes.
A series of substituted 2-iminopyrrolidines has been prepared and shown to be potent and selective inhibitors of the human inducible nitric oxide synthase (hiNOS) isoform versus the human endothelial nitric oxide synthase (heNOS) and the human neuronal nitric oxide synthase (hnNOS). Simple substitutions at the 3-, 4-, or 5-position afforded more potent analogues than the parent 2-iminopyrrolidine 1. The effect of ring substitutions on both potency and selectivity for the different NOS isoforms is described. Substitution at the 4- and 5-positions of the 2-iminopyrrolidine yielded both potent and selective inhibitors of hiNOS. In particular, (+)-cis-4-methyl-5-pentylpyrrolidin-2-imine, monohydrochloride (20), displayed potent inhibition of hiNOS (IC50 = 0.25 microM) and selectivities of 897 (heNOS IC50/hiNOS IC50) and 13 (hnNOS IC50/hiNOS IC50). Example 20 was shown to be an efficacious inhibitor of NO production in the mouse endotoxin assay. Furthermore, 20 displayed in vivo selectivity, versus heNOS isoform, by not elevating blood pressure at multiples of the effective dose in the mouse.
In the literature, the introduction of fluorine into bioactive molecules has been known to enhance the biological activity relative to the parent molecule. Described in this article is the synthesis of 4R-fluoro-L-NIL (12) and 4,4-difluoro-L-NIL (23) as part of our iNOS program. Both 12 and 23 were found to be selective iNOS inhibitors as shown in Table 2 below. Secondarily, methodology to synthesize orthogonally protected 4-fluoro-L-lysine and 4,4-difluoro-L-lysine has been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.