Phosphodiesterase 4 (PDE4), the primary cAMP-hydrolyzing enzyme in cells, is a promising drug target for a wide range of conditions. Here we present seven co-crystal structures of PDE4 and bound inhibitors that show the regulatory domain closed across the active site, thereby revealing the structural basis of PDE4 regulation. This structural insight, together with supporting mutagenesis and kinetic studies, allowed us to design small-molecule allosteric modulators of PDE4D that do not completely inhibit enzymatic activity (I(max) approximately 80-90%). These allosteric modulators have reduced potential to cause emesis, a dose-limiting side effect of existing active site-directed PDE4 inhibitors, while maintaining biological activity in cellular and in vivo models. Our results may facilitate the design of CNS therapeutics modulating cAMP signaling for the treatment of Alzheimer's disease, Huntington's disease, schizophrenia and depression, where brain distribution is desired for therapeutic benefit.
The 3-substituted beta-carbolines 2-4 and 5-7 were prepared from 3-amino-beta-carboline (8) in one step via diazotization, followed by reaction with the appropriate nucleophile in order to determine their binding affinity for benzodiazepine receptors (BzR). All three of the 3-alkoxy-beta-carbolines 2 (IC50 = 124 nM), 3 (IC50 = 24 nM), and 4 (IC50 = 11 nM) have high affinities for BzR. The beta-carbolines substituted with electron-withdrawing groups including 5 (Cl; IC50 = 45 nM), 6 (NO2; IC50 = 125 nM), and 7 (N = C = S; IC50 = 8 nM) also had high affinities for BzR. The affinities of 5-8 clearly indicate that a carbonyl moiety at position 3 of a beta-carboline is not required for high-affinity binding to BzR. These findings have led to the development of a model for the binding of ligands to an inverse agonist domain at BzR. This model is supported by the recent synthesis of 3-ethoxy-beta-carboline (3), a potent, long-lived partial inverse agonist, and 7, an irreversible BzR ligand.
The structural requirements for ligand binding to the benzodiazepine receptor (BzR) inverse agonist site were probed through the synthesis and in vitro evaluation of 3-substituted beta-carbolines 6, 7, 11, 12, gamma-carboline 13, and diindoles 18-21, 23-25, 27, 28, and 34. On the basis of the apparent binding affinities of these and other analogues, a hydrogen bond acceptor site (A2) on the receptor is proposed to interact with the N(9) hydrogen atom of the beta-carbolines or the N(7) hydrogen nuclei of the diindoles. Likewise, a proposed hydrogen bond donating site (H1) interacts with the N(2) nitrogen atom of the beta-carbolines or the N(5) nitrogen atom of the diindoles. It appears that interaction with both sites is a prerequisite for high affinity since analogues which have either one or both of these positions blocked exhibit substantial reduction in affinity. Moreover, H1 appears to be capable of engaging in a three-centered hydrogen bond with appropriately functionalized ligands, which explains the increase in potency observed in the following series of 3-substituted beta-carbolines: the n-butyl (12, IC50 = 245 nM), n-propoxy (9, IC50 = 11 nM), and propyl ketone (11, IC50 = 2.8 nM) congeners. In addition to H1 and A2, there appears to be a relatively narrow hydrophobic pocket in the binding cleft that can accommodate substituents at the 3-position of the beta-carbolines which have chain lengths less than or equal to C5. There is a 1 order of magnitude decrease in affinity between n-propoxy analogue 9 (IC50 = 11 nM, chain length = 4) and n-butoxy derivative 7 (IC50 = 98 nM, chain length = 5). Furthermore, alpha- and gamma-branching [e.g. ethoxycarbonyl (2), IC50 = 5 nM and tert-butoxycarbonyl (31) IC50 = 10 nM] but not beta- and delta-branching [e.g. isopropoxy (6), IC50 = 500 nM and (neopentyloxy) carbonyl (48), IC50 = 750 nM] at position 3 are tolerated. Occupation of this hydrophobic pocket is clearly important for high affinity as evidenced by the relatively low affinity of 30, a beta-carboline which possesses a hydrogen atom at the 3-position. This same hydrophobic pocket is partially filled by the D and E rings of the diindoles, which accounts for the high affinity of several members of this series. An excluded volume analysis using selected 3-substituted beta-carbolines and ring-E substituted pyridodiindoles is consistent with the presence of this hydrophobic pocket (see Figure 1).(ABSTRACT TRUNCATED AT 400 WORDS)
The synthesis and affinities of six new 3-substituted beta-carbolines (6-10, 12) for the benzodiazepine receptor (BzR) are described. These analogs were used both to probe the dimensions of the hydrophobic pocket in the benzodiazepine receptor and to test the predictive ability of a previously reported 3D-QSAR regression model. Of the new analogs synthesized, the gamma-branched derivatives (isobutoxy, 7, IC50 = 93 nM; isopentoxy, 9, IC50 = 104 nM) display significantly higher affinity for the BzR than either the beta-branched (sec-butoxy, 6, IC50 = 471 nM; tert-butyl ketone, 12, IC50 = 358 nM) or delta-branched (isopentoxy, 8, IC50 = 535 nM) analogs. An exception to this rule is the gamma-branched 3-benzyloxy derivative 10 (IC50 > 1000 nM) which appears to have a chain length that is too long to be accommodated by the BzR. The standard error of prediction for these six new beta-carbolines using the original regression model is significantly lower than the standard error estimate of the cross validation runs on the training set, hence the predictions made using this model are much better than expected. In order to obtain more credible predictions, a new procedure called GOLPE (generating optimal linear PLS estimates) was used to eliminate irrelevant electrostatic and steric descriptors from the regression equation. A substantial reduction in the standard error estimate resulted. The predictions from this new regression equation were somewhat less accurate than the ones obtained with the original regression equation; however the standard error of prediction and the standard error estimate are in much closer agreement. Finally, to probe the effect that the quality of the steric and electrostatic potentials has on 3D-QSAR analyses, the semiempirical MNDO parallel PRDDOE geometries and Mulliken charges used in the original analyses were replaced with ab initio 3-21G parallel 6-31G* geometries and electrostatic potential fit charges. A modest decrease in the standard error estimate and increase in cross validated R2 resulted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.