The effect of sodium hypochlorite (NaClO) on nucleic acids (NAs) was investigated. The effect of biomolecular structure on resistance to hypochlorite was analysed: plasmid bacterial DNA, calf thymus DNA, synthetic polyadenylic-uridic acid samples were studied, as well as individual nucleotides (adenosine-5’-tetraphosphoric acid and guanosin-2’, 3-cyclophosphoric acid). The effect of sodium hypochlorite on DNA was investigated depending on the concentrations of the components. We have also performed detailed analysis of the kinetics of the reaction between the NAs and NaClO. It was found that both the destruction of the secondary structure of DNA (denaturation) and the chemical modification of nitrogenous bases, presumably chlorination, occur. Presence of a stable double-stranded structure of DNA slows down the chemical reaction of sodium hypochlorite with nitrogenous bases of DNA.
The effect of sodium hypochlorite (NaClO) on nucleic acids (NAs) was investigated depending on the concentration of the NaClO. We have performed detailed analysis of the FTIR and UV spectra of the NAs incubated with NaClO. It was found that both the destruction of the secondary structure of DNA (denaturation) and the chemical modification of nitrogenous bases occur.
The action of hypochlorite on various biological molecules in a living cell has been actively studied for years. However, the influence of the structural organization of nucleic acids on their interaction with hypochlorite remains underinvestigated. In this work, using ultraviolet and infrared spectroscopy, we analyzed the effect of the structure of nucleic acids on the reaction with hypochlorite using the example of the three most common and biologically significant types of nucleic acids (NA): double-stranded DNA in the B-form, single-stranded RNA, and nucleotide phosphates. It was found that the rate of the initial stage of the reaction of hypochlorite with endocyclic nitrogen atoms depends on the presence/absence of base pairing in the NA structure. At the same time, the polymeric structure of NC significantly accelerates and increases the efficiency of the subsequent stages of the reaction associated with the chlorination of exocyclic nitrogen atoms and the destruction of the ring structure of nitrogenous bases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.