Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase.
Saccharomyces cerevisiae accumulates L-malic acid but not only minute amounts of fumaric acid. A 13C-nuclear magnetic resonance study following the label from glucose to L-malic acid indicates that the L-malic acid is synthesized from pyruvic acid via oxaloacetic acid. From this, and from previously published studies, we conclude that a cytosolic reductive pathway leading from pyruvic acid via oxaloacetic acid to L-malic acid is responsible for the L-malic acid production in yeast. The non-production of fumaric acid can be explained by the conclusion that, in the cell, cytosolic fumarase catalyzes the conversion of fumaric acid to L-malic but not the reverse. This conclusion is based on the following findings. (a) The cytosolic enzyme exhibits a 17-fold higher affinity towards fumaric acid than towards L-malic acid; the Km for L-malic acid is very high indicating that L-malic acid is not an in vivo substrate of the enzyme. (b) Overexpression of cytosolic fumarase does not cause accumulation of fumaric acid (but rather more L-malic acid). (c) According to 13C NMR studies there is no interconversion of cytosolic L-malic and fumaric acids.
SummaryFumarase and aconitase in yeast are dual localized to the cytosol and mitochondria by a similar targeting mechanism. These two tricarboxylic acid cycle enzymes are single translation products that are targeted to and processed by mitochondrial processing peptidase in mitochondria prior to distribution. The mechanism includes reverse translocation of a subset of processed molecules back into the cytosol. Here, we show that either depletion or overexpression of Cit2 (cytosolic citrate synthase) causes the vast majority of fumarase to be fully imported into mitochondria with a tiny amount or no fumarase in the cytosol. Normal dual distribution of fumarase (similar amounts in the cytosol and mitochondria) depends on an enzymatically active Cit2. Glyoxylate shunt deletion mutations (Dmls1, Daco1 and Dicl1) exhibit an altered fumarase dual distribution (like in Dcit2). Finally, when succinic acid, a product of the glyoxylate shunt, is added to the growth medium, fumarase dual distribution is altered such that there are lower levels of fumarase in the cytosol. This study suggests that the cytosolic localization of a distributed mitochondrial protein is governed by intracellular metabolite cues. Specifically, we suggest that metabolites of the glyoxylate shunt act as 'nanosensors' for fumarase subcellular targeting and distribution. The possible mechanisms involved are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.