In this study, we demonstrate the production of transgenic goats by nuclear transfer of fetal somatic cells. Donor karyoplasts were obtained from a primary fetal somatic cell line derived from a 40-day transgenic female fetus produced by artificial insemination of a nontransgenic adult female with semen from a transgenic male. Live offspring were produced with two nuclear transfer procedures. In one protocol, oocytes at the arrested metaphase II stage were enucleated, electrofused with donor somatic cells, and simultaneously activated. In the second protocol, activated in vivo oocytes were enucleated at the telophase II stage, electrofused with donor somatic cells, and simultaneously activated a second time to induce genome reactivation. Three healthy identical female offspring were born. Genotypic analyses confirmed that all cloned offspring were derived from the donor cell line. Analysis of the milk of one of the transgenic cloned animals showed high-level production of human antithrombin III, similar to the parental transgenic line.
Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat. Isolated donor testis cells were infused into the seminiferous tubules of anesthetized recipient goats through an ultrasonographically-guided catheter inserted into the rete testis. Donor cells were obtained by enzymatic digestion of freshly collected testes from immature goats (either from the recipients' contralateral testis or from unrelated donors). Prior to transplantation, testis cells were labeled with a fluorescent marker to allow identification after transplantation. Recipient testes were examined for the presence and localization of labeled donor cells at 3-week intervals up to 12 weeks after transplantation. Labeled donor cells were found in the seminiferous tubules of all testes, comprising 10-35% of the examined tubules. Histological examination of the recipient testes did not reveal evident tissue damage, except for limited fibrotic changes at the site of needle insertion. Likewise there were no detectable local or systemic signs of immunologic reactions to the transplantations. These results indicate that germ cell transplantation is technically feasible in immature male goats and that donor-derived cells are retained in the recipient testis for at least three months and through puberty. This study represents the first report of germ cell transplantation in goats.
ABSTRACT:The efficiency of germ cell transplantation, the procedure of transferring germ cells from a donor male into the testes of recipient males, can be greatly increased by reduction of endogenous germ cells in recipient animals. To develop effective methods for suppression of endogenous spermatogenesis in potential pig and goat recipients, we either administered busulfan to pregnant sows or irradiated the testes of immature goats. Piglets from sows treated twice with busulfan (7.5 mg/kg) at days 98 and 108 of gestation showed reduced gonocyte numbers at 2, 4, and 8 weeks of age and reduced initiation of spermatogenesis at 16 weeks of age. For goats, groups of 3 kids at 1, 5, or 9.5 weeks of age received fractionated irradiation of the testes with 3 doses of 2 Gy on 3 consecutive days. At 2 months after irradiation, 5%-10% of seminiferous tubule cross sections contained pachytene spermatocytes, compared with 50%-100% in controls. At 3 months after irradiation, spermatozoa appeared in 20% of tubule cross sections in all treated goats and in 100% of tubules in control goats. By 6 months after irradiation, spermatogenesis had recovered in 60% of tubules in goats treated at 5 or 9.5 weeks of age but in only 29% of tubules after treatment at 1 week of age. Therefore, late gestation in utero treatment of pigs with low doses of busulfan and testicular irradiation of goats at 1 week of age will result in a reduction in the endogenous germ cell population that could facilitate donor cell colonization after germ cell transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.