The relationship between the chemical structure of poly(alkylene glycol)s (PAGs) and their biodegradability was studied using a set of polymeric fluids that included poly(ethylene glycol), poly(propylene glycol) (PPG), random copolymers of ethylene oxide (EO) and propylene oxide (PO) differing in the EO/PO ratio as well as PAGs capped with ether or acyl moieties. The PAGs that were tested had an average molecular weight (MW) in the range of 350-3,600 Da and differed in their polymer backbones by either linear (diol type) or branched (triol type) molecules. The ultimate biodegradability of the PAGs was determined according to ISO 14593 (CO 2 headspace test) with a non-pre-exposed (as in OECD 310 test) and pre-exposed (adapted) inoculum. PAGs with the structure of PPG and copolymers of EO/PO of diol or triol structures with average molecular weights lower than 1,000 Da can be considered as readily biodegradable. Their ultimate biodegradation exceeds the limit of 60 % (according to the criteria of the OECD 310 test). PAGs with a copolymer structure and MW values ranging between 1,000 and 3,600 Da are not readily biodegradable, but they can be considered as those of inherent ultimate biodegradability. The increased EO content in PAG structures and the acylation of the terminal hydroxyl groups with carboxylic acids favourably influenced their biodegradability. Capped PAGs containing terminal ether groups appeared to be resistant to biodegradation.
Antibiotic overuse and mass production have led to a global problem with the treatment of antibacterial infections. Thus, any possibility to limit the number of antibacterial drugs used will contribute to a decrease in the development of pathogenic bacterial resistance. In this study, the enhanced bacterial growth reduction of pharmaceutical activated carbon (PAC) material with adsorbed antimicrobial agents compared to the activity of pure antibacterial drugs was investigated. Sulfamethoxazole (SMZ) at a concentration of 1.1 mg/mL retained the growth of S. aureus and E. coli at 20.5% and 26.5%, respectively, whereas SMZ adsorbed on PAC increased the reduction of the tested bacteria in the range of 47–72%. The use of PAC with adsorbed gentamycin (G) over 24 h improved the effectiveness of E. coli growth reduction by 50% compared to the application of pure antibiotic (3.6 µg/mL). The increased reduction of S. aureus growth by 6% using G with PAC for a 24-h incubation time compared to the use of pure antibiotics at a concentration of 3.6 µg/mL was observed. The results provide proof-of-principle that the new approach of activated carbon with adsorbed antimicrobial agents could yield an attractive background with potential as a new starting material for S. aureus and E. coli pathogen elimination, e.g., in wound-healing treatment in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.