A 3D printer in FDM technology allows printing with two nozzles, which creates an opportunity to produce multi-material elements. Printing from two materials requires special consideration of the interface zone generated between their geometrical boundaries. This article aims to present the possibility of printing with PLA and TPU using commercially available filaments and software to obtain the best possible bond strength between two different polymers with respect to printing parameters, surface pattern (due to the material contact surface’s roughness), and the order of layer application. The interaction at the interface of two surfaces of two different filaments (PLA-TPU and TPU-PLA) and six combinations of patterns were tested by printing seven replicas for each. A total of 12 combinations were obtained. By analyzing pairs of samples (the same patterns, different order of materials), the results for the TPU/PLA samples were better or very close to the results for PLA/TPU. The best variants of pattern combinations were distinguished. Well-chosen printing parameters can prevent a drop in parts efficiency compared to component materials (depending on the materials combination).
3D printing is a revolutionary additive manufacturing method that enables rapid prototyping and design flexibility. A variety of thermoplastic polymers can be used in printing. As it is necessary to reduce the consumption of petrochemical resources, alternative solutions are being researched, and the interest in using bioplastics and biocomposites is constantly growing. Often, however, the properties of biopolymers are insufficient and need to be improved to compete with petroleum-based plastics. The paper aims to analyze the available information on elements produced from more than one material, with additive manufacturing resulting from 3D printing using biopolymer Polylactic Acid (PLA). The study notes the possibility of modifying and improving the properties of PLA using layered printing or by modifying PLA filaments. Several modifications improving and changing the properties of PLA were also noted, including printing parameters when combined with other materials: process temperatures, filling, and surface development for various sample geometries.
In the Fused Filament Fabrication (FFF/FDM) technology, the multi-material manufacturing additive method is achieved by a single nozzle or multiple nozzles working simultaneously with different materials. However, the adhesion between different materials at the boundary interface in FDM multi-material printing is a limiting factor. These studies are concerned with improving and study the adhesion between two polymers.Due to the numerous applications and possibilities of 3D printed objects, combining different materials has become a subject of interest. PLA is an alternative to the use of petrochemical-based polymers. Thermoplastic Polyurethane is a flexible material that can achieve different characteristics when combined with a rigid filament, such as PLA. To improve the adhesion between PLA and TPU in multi-material FFF/FDM, we propose the comparison of different processes: post-processing with acetone immersion, surface activation during printing with Acetone, surface activation during printing with tetrahydrofuran, post-processing annealing, and connection of printed parts with tetrahydrofuran.Modifying the 3D printing process improved the quality of the adhesive bond between the two different polymers. Activation of the surface with THF is the treatment method recommended by the authors due to the low impact on the deformation/degradation of the object.In the study, adhesion was considered in relation to the circular pattern of surface development. Further analysis should include other surface development patterns and changes in printing parameters, e.g. process temperatures and layer application speed.3D printing with multi-materials, such as PLA biopolymer and thermoplastic polyurethane, allows for the creation of flexible connections. The strengthening of the biopolymer broadens the possibilities of using polylactide. Examples of applications include: automotive (elements, where flexible TPU absorbs vibrations and protects PLA from cracking), medicine (prostheses with flexible elements ensuring mobility in the joints).Multi-material printing is a new trend in 3D printing research, and this research is aimed at promoting the use and expanding the possibilities of using PLA biopolymer.
This study aims to investigate the adhesion of combining two materials with different properties (PLA-TPU and TPU-PLA) printed in FFF (fused filament fabrication) with post-processing treatments.The scope of the study includes making variants of samples and subjecting them to three different post-printing treatments. After processes, shear tests were conducted to determine the adhesion.The post-printing treatment results in a stronger inter-material bond and increased adhesion strength; the best average shear strength results were achieved for annealing without acetone and for PLA/TPU samples for treatment in cold acetone vapour.In the study, adhesion was considered in the circular pattern of surface development.Reinforcement of the biopolymer broadens the possibilities of using polylactide. Examples of applications include personalised printing items, where the elastomer will strengthen the polylactide.These studies aim to promote the use and expand the possibilities of using PLA biopolymer. The strength properties of printouts from different materials are often insufficient, hence the proposal to use post-printing processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.