A 3D printer in FDM technology allows printing with two nozzles, which creates an opportunity to produce multi-material elements. Printing from two materials requires special consideration of the interface zone generated between their geometrical boundaries. This article aims to present the possibility of printing with PLA and TPU using commercially available filaments and software to obtain the best possible bond strength between two different polymers with respect to printing parameters, surface pattern (due to the material contact surface’s roughness), and the order of layer application. The interaction at the interface of two surfaces of two different filaments (PLA-TPU and TPU-PLA) and six combinations of patterns were tested by printing seven replicas for each. A total of 12 combinations were obtained. By analyzing pairs of samples (the same patterns, different order of materials), the results for the TPU/PLA samples were better or very close to the results for PLA/TPU. The best variants of pattern combinations were distinguished. Well-chosen printing parameters can prevent a drop in parts efficiency compared to component materials (depending on the materials combination).
The herein paper contains the results of investigations on a new type of cellulose blend used for the manufacture of profiles applied in the process of making gating systems in the foundry industry. A standard cellulose profile was subjected to an experiment. During the experiment the profile was filled with a liquid cast iron and at the same time the temperatures of the liquid metal crystallizing inside the profile were measured as well as the temperature of the outer layer of the profile was controlled. Further, the microstructure of the cast iron, which crystallized out inside the cellulose profile, was analysed and the cellulose, thermally degraded after the experiment, was verified with the use of the chemical analysis method. Moreover, a quality analysis of the original as well as the degraded cellulose profile was run with the use of the FTIR infrared spectroscopy. The presented results revealed that the cellulose blend is aluminium silicate enriched and contains organic binder additives. The cast iron, which crystallized out, tended to have an equilibrium pearlitic structure with the release of graphite and carbides. The generation of disequilibrium ausferrite phases was also observed in the structure.
Purpose: The purpose of this paper is to analyse attempts at improving the bond between
acrylic artificial teeth and the denture base plate - considered in the context of single incisors
in framework denture.
Design/methodology/approach: It is a review article focusing on the analysis of state of
the art in the field of the bond between the polymerised acrylic (teeth) and the polymerising
acrylic resin during the production of denture (denture plate). Previous works regard the issue
of individual incisor teeth (both upper and lower) breaking off from the metal partial denture.
Findings: The bond between artificial acrylic teeth and the acrylic denture plate of the
prosthesis was discussed. Ways of improving this bond were also presented. Although
researchers and companies offer many methods for improving this bond, none of them
refer directly to the issue discussed in this article. In conclusion- the hitherto scientific
achievements work well in the case of acrylic prostheses without a metal frame, which
constitutes an obstacle for achieving the effect required. In this work, it is suggested that
further research would not only develop and provide more detail on the issue of the bond
between artificial teeth and the denture plate, but also solve the problem appearing in cases
of metal partial denture.
Originality/value: This article shows a significant problem that hasn’t been discussed in
detail in the past.
The mechanical properties and the thickness of the resin cement agents used for bonding inlay bridges can modify the clinical performance of the restoration such as debonding or prosthetic materials fracture. Thus, the aim of this study was to evaluate the stress distribution and the maximum strain generated by resin cements with different elastic moduli and thicknesses used to cement resin-bonded fixed partial denture (RBFPD). A three-dimensional (3D) finite element analysis (FEA) was used, and a 3D model was created based on a Cone-Beam Computed Tomography system (CBCT). The model was analyzed by the Ansys software. The model fixation occurred at the root of the abutment teeth and an axial load of 300 N was applied on the occlusal surface of the pontic. The highest stress value was observed for the Variolink 0.4 group (1.76 × 106 Pa), while the lowest was noted for the Panavia 0.2 group (1.07 × 106 Pa). Furthermore, the highest total deformation value was found for the Variolink 0.2 group (3.36 × 10−4 m), while the lowest was observed for the Panavia 0.4 group (2.33 × 10−4 m). By means of this FEA, 0.2 mm layer Panavia F2.0 seemed to exhibit a more favorable stress distribution when used for cementation of posterior zirconium-dioxide-based RBFPD. However, both studied materials possessed clinically acceptable properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.