The separation and simultaneous determination of doxorubicin, daunorubicin and idarubicin was investigated using capillary electrophoresis with laser-induced fluorescence detection. Because the three anthracycline antibiotics were similar in structure and mass, careful manipulation of the electroosmotic flow and electrophoretic mobilities was required. A buffer consisting of 100 mM borate, adjusted to pH 9.5, containing 30% acetonitrile was found to provide a very efficient and stable electrophoretic system for the analysis of the three anthracyclines. The method was applied to the determination of three anthracyclines in serum samples. Responses were linear in the range of 10-500 ng.mL-1 and the detection limits were lower than 0.9 ng.mL-1.
SummaryThe potential of capillary zone electrophoresis has been investigated for the separation and quantitative determination of some quinolone antibiotics. The influence of different conditions, such as the nature and concentration of the electrophoretic electrolyte, on migration time, peak symmetry, efficiency and resolution was studied. A buffer consisting of 100 mM HEPES adjusted to pH 8.5 containing 10 % (v/v) acetonitrile was found to furnish a very efficient and stable electrophoretic system for the separation of enoxacin, ciprofloxacin, ofloxacin, oxolinic acid, nalidixic acid and pipemedic acid. A linear relationship between concentration and peak area for each compound was obtained in the concentration range 0.25-40 ~ag mL-1; detection limits were approximately 0.25 ng mL -1. It was demonstrated that the method can be used for the simultaneous determination of these six antibiotics in serum and urine samples.
The separation of riboflavin, flavin mononucleotide and flavin adenine dinucleotide was investigated by capillary zone electrophoresis using laser-induced fluorescence detection. In the systematic approach developed, the differential electrophoretic mobilities were first maximized by adjusting the pH. Increasing the buffer concentration improved the separation at the expense of migration times. A buffer consisting of 50 mM phosphate adjusted to pH 8.5 was found to provide a very efficient and stable electrophoretic system. Responses were linear within the range 0.1-100 micromol L(-1), and the detection limits of B2 vitamers were 0.23 nmol L(-1) or less. The method was successfully applied to a variety of biological tissues from different animals.
The separation and simultaneous determination of doxorubicin, daunorubicin and idarubicin was investigated using capillary electrophoresis with laser-induced fluorescence detection. Because the three anthracycline antibiotics were similar in structure and mass, careful manipulation of the electroosmotic flow and electrophoretic mobilities was required. A buffer consisting of 100 mM borate, adjusted to pH 9.5, containing 30% acetonitrile was found to provide a very efficient and stable electrophoretic system for the analysis of the three anthracyclines. The method was applied to the determination of three anthracyclines in serum samples. Responses were linear in the range of 10-500 ng.mL-1 and the detection limits were lower than 0.9 ng.mL-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.