The therapeutic management of severe radiation burns remains a challenging issue. Conventional surgical treatment (excision and skin autograft or rotation flap) often fails to prevent unpredictable and uncontrolled extension of the radiation necrotic process. We report here an innovative therapeutic strategy applied to the victim of a radiation accident (December 15, 2005) with an iridium gammagraphy radioactive source (192Ir, 3.3 TBq). The approach combined numerical dosimetry-guided surgery with cellular therapy using mesenchymal stem cells. A very severe buttock radiation burn (2000 Gy at the center of the skin surface lesion) of a 27-year-old Chilean victim was widely excised (10 cm in diameter) using a physical and anatomical dose reconstruction in order to better define the limit of the surgical excision in apparently healthy tissues. A secondary extension of the radiation necrosis led to a new excision of fibronecrotic tissues associated with a local cellular therapy using autologous expanded mesenchymal stem cells as a source of trophic factors to promote tissue regeneration. Bone marrow-derived mesenchymal stem cells were expanded according to a clinical-grade technique using closed culture devices and serum-free medium enriched in human platelet lysate. The clinical evolution (radiation pain and healing progression) was favorable and no recurrence of radiation inflammatory waves was observed during the 11 month patient's follow-up. This novel multidisciplinary therapeutic approach combining physical techniques, surgical procedures and cellular therapy with adult stem cells may be of clinical relevance for improving the medical management of severe localized irradiations. It may open new prospects in the field of radiotherapy complications.
The thyroid gland in children is one of the organs that is most sensitive to external exposure to X and gamma rays. However, data on the risk of thyroid cancer in children after exposure to radioactive iodines are sparse. The Chornobyl accident in Ukraine in 1986 led to the exposure of large populations to radioactive iodines, particularly (131)I. This paper describes an ongoing cohort study being conducted in Belarus and Ukraine that includes 25,161 subjects under the age of 18 years in 1986 who are being screened for thyroid diseases every 2 years. Individual thyroid doses are being estimated for all study subjects based on measurement of the radioactivity of the thyroid gland made in 1986 together with a radioecological model and interview data. Approximately 100 histologically confirmed thyroid cancers were detected as a consequence of the first round of screening. The data will enable fitting appropriate dose-response models, which are important in both radiation epidemiology and public health for prediction of risks from exposure to radioactive iodines from medical sources and any future nuclear accidents. Plans are to continue to follow-up the cohort for at least three screening cycles, which will lead to more precise estimates of risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.