Economic Benefits of Bt Maize Maize containing a transgenically expressed toxin originating from Bacillus thuringiensis (Bt maize) is planted across the United States to combat insect herbivory. Non-Bt Maize is also planted alongside Bt maize fields to provide refuges for the insects, which helps to prevent resistance to Bt maize from evolving. Hutchison et al. (p. 222 ; see the Perspective by Tabashnik ) analyzed how Bt maize affected the economic impact of the European corn borer moth in the midwestern United States, as well as its population dynamics. Larval density, a predictor of corn borer population size, has dropped in correlation with the percentage of Bt maize planted. In the highest Bt maize producing state, the positive effects of Bt maize in controlling insect herbivore populations extended to non-Bt maize. Furthermore, the decrease in insect populations demonstrated an overall economic benefit outweighing the overall extra costs associated with planting Bt maize.
Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hübner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.
The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.
As part of an insect resistance management plan to preserve Bt transgenic technology, annual monitoring of target pests is mandated to detect susceptibility changes to Bt toxins. Currently Helicoverpa zea (Boddie) monitoring involves investigating unexpected injury in Bt crop fields and collecting larvae from non-Bt host plants for laboratory diet bioassays to determine mortality responses to diagnostic concentrations of Bt toxins. To date, this monitoring approach has not detected any significant change from the known range of baseline susceptibility to Bt toxins, yet practical field-evolved resistance in H. zea populations and numerous occurrences of unexpected injury occur in Bt crops. In this study, we implemented a network of 73 sentinel sweet corn trials, spanning 16 U.S. states and 4 Canadian provinces, for monitoring changes in H. zea susceptibility to Cry and Vip3A toxins by measuring differences in ear damage and larval infestations between isogenic pairs of non-Bt and Bt hybrids over three years. This approach can monitor susceptibility changes and regional differences in other ear-feeding lepidopteran pests. Temporal changes in the field efficacy of each toxin were evidenced by comparing our current results with earlier published studies, including baseline data for each Bt trait when first commercialized. Changes in amount of ear damage showed significant increases in H. zea resistance to Cry toxins and possibly lower susceptibility to Vip3a. Our findings demonstrate that the sentinel plot approach as an in-field screen can effectively monitor phenotypic resistance and document field-evolved resistance in target pest populations, improving resistance monitoring for Bt crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.