The Asian vinegar fly Drosophila suzukii (spotted wing Drosophila [SWD]) has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000s. While research efforts have rapidly progressed in Asia, North America, and Europe over the past 5 years, important new insights may be gained in comparing and contrasting findings across the regions affected by SWD. In this review, we explore common themes in the invasion biology of SWD by examining (1) its biology and current pest status in endemic and recently invaded regions; (2) current efforts and future research needs for the development of predictive models for its geographic expansion; and (3) prospects for both natural and classical (=importation) biological control of SWD in invaded habitats, with emphasis on the role of hymenopteran parasitoids. We conclude that particularly fruitful areas of research should include fundamental studies of its overwintering, host-use, and dispersal capabilities; as well as applied studies of alternative, cost-effective management techniques to complement insecticide use within the integrated pest management framework. Finally, we emphasize that outreach efforts are critical to effective SWD management by highlighting successful Communicated by M. Traugott. Electronic supplementary materialThe online version of this article (strategies and insights gained from various geographic regions.Keywords Biological control Á Drosophila Á Frugivore Á Integrated pest management Á Invasion biology Key message• Spotted wing Drosophila (SWD) is a major invasive pest of soft fruits in the Americas and Europe. • We review the current global distribution and economic impacts of SWD, develop models for predicting its further spread, and discuss the prospects for biological control of this pest. • The following research areas into SWD biology appear particularly promising: its biology at low temperatures, the dispersal and migratory abilities of adults, and exploration in Asian regions for potential classical biological control agents.
Economic Benefits of Bt Maize Maize containing a transgenically expressed toxin originating from Bacillus thuringiensis (Bt maize) is planted across the United States to combat insect herbivory. Non-Bt Maize is also planted alongside Bt maize fields to provide refuges for the insects, which helps to prevent resistance to Bt maize from evolving. Hutchison et al. (p. 222 ; see the Perspective by Tabashnik ) analyzed how Bt maize affected the economic impact of the European corn borer moth in the midwestern United States, as well as its population dynamics. Larval density, a predictor of corn borer population size, has dropped in correlation with the percentage of Bt maize planted. In the highest Bt maize producing state, the positive effects of Bt maize in controlling insect herbivore populations extended to non-Bt maize. Furthermore, the decrease in insect populations demonstrated an overall economic benefit outweighing the overall extra costs associated with planting Bt maize.
Artículo de publicación ISIThe harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people
Invasões de Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) no Hemisfério Ocidental: Implicacões para a América do Sul RESUMO -A joaninha, Harmonia axyridis (Pallas), nativa da Ásia, foi recentemente detectada na América do Sul depois de ter invadido a América do Norte e Europa. Essa joaninha é um predador voraz, e portanto, popular e eficaz no controle biológico. Infelizmente, H. axyridis também está relacionada a impactos nocivos (ex., como peste residencial e de frutas temperadas e ameaça a organismos não-alvos). Para fazer prever os possíveis impactos de H. axyridis na América do Sul, a história da sua invasão no Hemisfério Ocidental foi revisada e os vários fatores críticos para futuras invasões (isto é, chegada, estabelecimento e disseminação) em novas áreas da América do Sul foram discutidos. A possibilidade de introduções contínuas de H. axyridis na América do Sul parece alta devido a sua popularidade como agente de controle biológico e através de introduções acidentais. Seu estabelecimento também parece possível em extensas regiões da América do Sul. A similaridade climática com a região nativa sugere que o estabelecimento é possível na região sul da América do Sul. Porém, similaridade de hábitat com a região nativa sugere que o estabelecimento seja mais adequado na região norte da América do Sul. Além disso, a disponibilidade da presa não deve ser um fator limitante para o estabelecimento desse predador. Após o estabelecimento, H. axyridis pode se disseminar pelo próprio vôo e por meios associados ao homem. Concluindo, a invasão de H. axyridis em novas áreas do continente sul-americano é provável. (Colunga-Garcia & Gage 1998, Brown & Miller 1998, Michaud 2002b, Alyokhin & Sewell 2004, Saini 2004, which may be partly due to intraguild predation (e.g., Cottrell & Yeargan 1998, Michaud 2002b, Cottrell 2004, Yasuda et al. 2004. In addition, H. axyridis may impact populations of the monarch butterfly, Danaus plexippus (Koch et al. 2004c, in press b). Second, H. axyridis can be a pest of fruit production (Koch et al. 2004a), particularly as a contaminant during wine production (Pickering et al. 2004, Galvan et al. 2006. Third, H. axyridis can be a nuisance to humans. It can become a household pest when it seeks shelter from winter in homes and other structures (Nalepa et al. 2004(Nalepa et al. , 2005. Once on or in a home, massive aggregations of H. axyridis are a nuisance to homeowners (Nalepa et al. 2004, Huelsman & Kovach 2004 and can cause allergic reactions in humans (Ray & Pence 2004). Similarly, H. axyridis can form autumn aggregations in bee hives, where it apparently does not harm the bees, but is a nuisance to the bee keepers (Caron 1996).The geographic range and impacts (both positive and negative) of H. axyridis are expanding rapidly. Currently, this coccinellid is widely established in North America Can we use what we have learned from the invasion of H. axyridis in North America to predict implications for South America? In this paper, we provide a review of the literature on the histor...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.