ELI-Beamlines (ELI-BL), one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP), plasma physics and ultra-high intensity (UHI) (1022W/cm2) laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform) installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM) and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF). Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.
The choice of the correct density profile is crucial in laser wakefield acceleration. In this work, both subsonic and supersonic gas targets are characterized by means of fluid-dynamic simulations and experimental interferometric measurements. The gas targets are studied in different configurations, and the density profiles most suitable for laser wakefield acceleration are discussed.
Abstract. We study the dynamics of charged particles under the influence of a strong magnetic field by numerically solving the Vlasov-Poisson and guiding center models. By using appropriate data structures, we implement an efficient (from the memory access point of view) particle-in-cell method which enables simulations with a large number of particles. We present numerical results for classical one-dimensional Landau damping and two-dimensional Kelvin-Helmholtz test cases. The implementation also relies on a standard hybrid MPI/OpenMP parallelization. Code performance is assessed by the observed speedup and attained memory bandwidth.
Results are presented on the maximum current density obtained in pulsed (2 μs) contact ionization sources that utilize potassium and cesium atoms on porous tungsten substrates. Maximum values of 89 and 48 mA/cm2 for K+ and Cs+, respectively, were obtained in space charge limited mode for the source geometry used. Similar results were observed for potassium aluminosilicate (K20⋅Al2O3⋅4SiO2) sources. Neutral emission rates were measured in the temperature range of interest to heavy ion fusion (1000–1150 °C). Evidence is presented regarding a diffusion-limited flow of alkali atoms towards the emitting surface, which would be a determining factor in the source lifetime.
Laser wake field acceleration (LWFA) is an efficient method to accelerate electron beams to high energy. This is a benefit in research infrastructures where a multidisciplinary environment can benefit from the different secondary sources enabled, having the opportunity to extend the range of applications that is accessible and to develop new ideas for fundamental studies. The ELI Beamline project is oriented to deliver such beams to the scientific community both for applied and fundamental research. The driver laser is a Ti:Sa diode-pumped system , running at a maximum performance of 10 Hz, 30 J, and 30 fs. The possibilities to setup experiments using different focal lengths parabolas, as well as the possibility to counter-propagate a second laser beam intrinsically synchronized, are considered in the electron acceleration program. Here, we review the laser-driven electron acceleration experimental platform under implementation at ELI Beamlines, the HELL (High-energy Electrons by Laser Light) experimental platform .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.