The growth dynamics of multicell tumour spheroids (MTS) were analysed by means of mathematical techniques derived from signal processing theory. Volume vs. time trajectories of individual spheroids were fitted with the Gompertz growth equation and the residuals (i.e. experimental volume determinations minus calculated values by fitting) were analysed by fast fourier transform and power spectrum. Residuals were not randomly distributed around calculated growth trajectories demonstrating that the Gompertz model partially approximates the growth kinetics of three-dimensional tumour cell aggregates. Power spectra decreased with increasing frequency following a 1/f(delta) power-law. Our findings suggest the existence of a source of 'internal' variability driving the time-evolution of MTS growth. Based on these observations, a new stochastic Gompertzian-like mathematical model was developed which allowed us to forecast the growth of MTS. In this model, white noise is additively superimposed to the trend described by the Gompertz growth equation and integrated to mimic the observed intrinsic variability of MTS growth. A correlation was found between the intensity of the added noise and the particular upper limit of volume size reached by each spheroid within two MTS populations obtained with two different cell lines. The dynamic forces generating the growth variability of three-dimensional tumour cell aggregates also determine the fate of spheroid growth with a strong predictive significance. These findings suggest a new approach to measure tumour growth potential.
The growth kinetics of 9L (rat glioblastoma cell line) and U118 (human glioblastoma cell line) multicellular tumour spheroids (MTS) have been investigated by non-linear least square fitting of individual growth curves with the Gompertz growth equation and power spectrum analysis of residuals. Residuals were not randomly distributed around calculated growth trajectories. At least one main frequency was found for all analysed MTS growth curves, demonstrating the existence of time-dependent periodic fluctuations of MTS volume dimensions. Similar periodic oscillations of MTS volume dimensions were also observed for MTS generated using cloned 9L cells. However, we found significant differences in the growth kinetics of MTS obtained with cloned cells if compared to the growth kinetics of MTS obtained with polyclonal cells. Our findings demonstrate that the growth patterns of three-dimensional tumour cell cultures are more complex than has been previously predicted using traditional continuous growth models.
The growth kinetics of 9L (rat glioblastoma cell line) and U118 (human glioblastoma cell line) multicellular tumour spheroids (MTS) have been investigated by non-linear least square fitting of individual growth curves with the Gompertz growth equation and power spectrum analysis of residuals. Residuals were not randomly distributed around calculated growth trajectories. At least one main frequency was found for all analysed MTS growth curves, demonstrating the existence of time-dependent periodic fluctuations of MTS volume dimensions. Similar periodic oscillations of MTS volume dimensions were also observed for MTS generated using cloned 9L cells. However, we found significant differences in the growth kinetics of MTS obtained with cloned cells if compared to the growth kinetics of MTS obtained with polyclonal cells. Our findings demonstrate that the growth patterns of three-dimensional tumour cell cultures are more complex than has been previously predicted using traditional continuous growth models.
A chimeric protein was obtained by fusing together the ricin toxin A chain (RTA) gene and a DNA fragment encoding the N terminus of protein G of the vesicular stomatitis virus. Chimeric RTA (cRTA) retained full enzymic activity in a cell-free assay, but was 10-fold less toxic against human leukemic cells than either native RTA (nRTA) or unmodified recombinant RTA (rRTA). However, conjugates made with cRTA and human transferrin (Tfn) showed 10 -20-fold greater cell killing efficacy than Tfn-nRTA or Tfn-rRTA conjugates despite equivalent binding of the three conjugates to target tumor cells. As a consequence, by fusion of the KFT25 peptide to the RTA sequence, the specificity factor (i.e. the ratio between nonspecific and specific cytotoxicity) of Tfn-cRTA was increased 90 -240 times with respect to those of Tfn-nRTA and Tfn-rRTA. cRTA interacted with phospholipid vesicles with 15-fold faster kinetics than nRTA at acidic pH. Taken together, our results suggest that the ability of vesicular stomatitis virus protein G to interact with cell membranes can be transferred to RTA to facilitate its translocation to the cell cytosol. Our strategy may serve as a general approach for potentiating the cytotoxic efficacy of antitumor immunotoxins.Cell-surface structures mediating the efficient internalization of cell-bound molecules are frequently selected as targets of monoclonal antibody/ligand-toxin conjugates (immunotoxins (IT) 1 ) (1). Rapid internalization, however, is not always synonymous with fast intoxication rates of the target cells as a result of cell mechanisms leading to inactivation of the internalized IT molecules (e.g. recycling, degradation, slow routing to subcellular compartments competent for toxin translocation) (1). The ricin toxin A chain (RTA) is a potent ribosome-inactivating enzyme used in the synthesis of highly selective IT. However, RTA-based IT exert their effect at relatively high concentrations due to poor translocation of RTA to the cell cytosol from the endocytic compartments where the IT are internalized (1).Viruses utilize specialized envelope structures that allow them to enter the cytosol of the infected cells. We reasoned that it might be possible to modify a cytotoxic enzyme (i.e. RTA) by fusing it to a protein structure derived from viral envelopes, thus conferring to the cytotoxic enzyme the cytosol targeting properties of the virus. A peptide representing the primary sequence of the 25 N-terminal amino acids of protein G of the vesicular stomatitis virus envelope (KFT25) was found to have pH-dependent membrane destabilizing properties (2, 3). In particular, at low pH, KFT25 was shown to be hemolytic, to mediate hemagglutination, to be cytotoxic for mammalian cells, and to effect gross changes in cell permeability (2, 3). Such a virus-derived structure might be endowed with the ability to facilitate the translocation of heterologous proteins across cell membranes when they are routed to acidic intracellular compartments.The transferrin receptor is a cell-surface structure known to de...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.