Abstract. Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000–5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000–4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.
Abstract. Seasonal snow cover is the primary water resource precursor for human use and environmental sustain along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically-based energy balance model in order to obtain melt-season peak SWE. Estimates show an overall coefficient of determination R2 of 0.61 compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. Average peak SWE increases by nearly 500 mm for every 1000 m in elevation gain for the central and southern sub-regions of the model domain, but this effect is much less pronounced in the northern reaches. The 3000–4000 m a.s.l. elevation band is the most significant accumulation area for most of the northern and central reaches of the domain, although the 4000–5000 m a.s.l. band, despite a smaller contributing area, almost doubles the accumulation amounts estimated for the lower adjacent subdomain. Snow accumulation reaches an earlier peak in the western Andes, and the eastern side of the continental divide shows lower snow accumulation at all elevations except for the southern region represented by the Neuquén River Basin. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.
Cell-free extract supematant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP)-_ pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + C02), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn2+ being more effective than Mg2+. The NADP-dependent enzyme is activated by K+ and low concentrations of NH,+. Both reactions are reversible, as shown by incubation with pyruvate, C02, NADH, or NADPH and Mn2+. The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.