1. Rat soleus strips were incubated with 5 mM glucose, after which tissue metabolites were measured. Alternatively, muscle strips were incubated with 5 mM glucose and 0.2 mM palmitate, and the formation of 14CO2 from exogenous palmitate or from fatty acids released from prelabelled glycerolipids was measured. 2. Etomoxir, which inhibits the mitochondrial overt form of carnitine palmitoyltransferase (CPT1), increased the tissue content of long-chain fatty acyl-CoA esters and decreased the ratio of fatty acylcarnitine to fatty acyl-CoA, suggesting that such changes could be a diagnostic for the inhibition of CPT1 3. Over a range of incubation conditions there was a positive correlation between the tissue contents of malonyl-CoA and long-chain fatty acyl-CoA esters. Under conditions in which these two metabolites increased in content (i.e. with insulin or with 3 mM dichloroacetate) there was a corresponding decrease in the ratio of fatty acylcarnitine to fatty acyl-CoA and a decrease in beta-oxidation. Isoprenaline or palmitate (0.5 mM) opposed the effect of insulin, decreasing the contents of malonyl-CoA and long-chain fatty acyl-CoA, increasing the ratio of fatty acylcarnitine to fatty acyl-CoA and increasing beta-oxidation. These findings are consistent with the notion that all of these agents can cause the acute regulation of CPT1 in Type I skeletal muscle. 4. The addition of 5-amino-4-imidazolecarboxamide ribonucleoside (AICAriboside) to cause activation of the AMP-activated protein kinase decreased the tissue content of malonyl-CoA. AICAriboside also had an antilipolytic effect in the muscle strips. 5. Measurements were made of the activities of ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthase and malonyl-CoA decarboxylase in soleus muscle and in representative Type IIa and Type IIb muscles. A cytosolic activity of malonyl-CoA decarboxylase would seem to offer a feasible route for the disposal of malonyl-CoA in skeletal muscle.
1. Viable myocytes were obtained from rat hearts. Oxidation of [1-14C]palmitate by these cells could be decreased by the addition of glucose (5 mM) or lactate (2 mM). In the presence of glucose, insulin decreased and adrenaline increased palmitate oxidation. 2. The myocytes contained activities of ATP citrate-lyase, acetyl-CoA carboxylase and the condensing enzyme of the fatty acid elongation system. No fatty acid synthase activity was demonstrable in myocytes. 3. In rat hearts perfused with 5 mM glucose, malonyl-CoA content was acutely raised by insulin. In the presence of glucose+insulin, perfusion with palmitate or adrenaline decreased the malonyl-CoA content. 4. It is concluded that malonyl-CoA can be synthesized within cardiac myocytes and that the level of this metabolite can be acutely regulated. This is likely to have consequences for the regulation of carnitine palmitoyltransferase in the heart.
[14C]Malonyl-CoA bound to intact mitochondria isolated from rat liver and heart in a manner consistent with the presence of two independent classes of binding sites in each tissue. The binding characteristics for mitochondria obtained from fed male rats were: for heart, KD(1) = 11-18nM, KD(2) = 30 microM, N1 = 7pmol/mg of protein, N2 = approx. 660pmol/mg of protein; for liver, KD(1) = 0.1 microM, KD(2) = 5.6 microM, N1 = 11pmol/mg of protein, N2 = 165pmol/mg of protein. In the presence of 40 microM-palmitoyl-CoA the characteristics of binding at the high-affinity sites were changed, so that for heart KD(1) = 0.26 microM, with no change in N1 and for liver KD(1) = approx. 2 microM, with N1 increased to approx. 40pmol/mg of protein. Differences between the two tissues in tightness of malonyl-CoA binding at the high-affinity sites explains the considerably greater sensitivity of heart CPT1 (overt form of carnitine palmitoyltransferase) to inhibition by malonyl-CoA [Saggerson & Carpenter, (1981) FEBS Lett. 129, 229-232; McGarry, Mills, Long & Foster (1983) Biochem. J. 214, 21-28]. Starvation (24h) did not change the characteristics of [14C]malonyl-CoA binding to liver mitochondria and did not alter the I50 (concentration giving 50% inhibition) for displacement of [14C]malonyl-CoA by palmitoyl-CoA. Therefore the decreased sensitivity of liver CPT1 to inhibition by malonyl-CoA in starvation [Saggerson & Carpenter (1981) FEBS Lett. 129, 225-228; Bremer (1981) Biochim. Biophys. Acta 665, 628-631] is not explained by differences in malonyl-CoA binding. Percentage occupancy of the high-affinity sites in heart mitochondria by malonyl-CoA correlated closely with percentage inhibition of CPT1 measured under similar conditions. This finding supports the proposal that the high-affinity binding sites are the functional sites mediating inhibition of CPT1 by malonyl-CoA. Similar experiments with liver mitochondria also suggested that the occupancy of high-affinity sites by malonyl-CoA regulates CPT1 activity. 5,5′-Dithiobis-(2-nitrobenzoic acid), which decreased the sensitivity of heart or liver CPT1 to inhibition by malonyl-CoA [Saggerson & Carpenter (1982) FEBS Lett. 137, 124-128], also decreased [14C]malonyl-CoA binding to the high-affinity sites of heart mitochondria. N1 values for [14C]malonyl-CoA binding to high-affinity sites in liver mitochondria were determined in various physiological states which encompassed a 7-fold range of CPT1 maximal activity (fed, starved, pregnant, hypothyroid, foetal). The N1 value did not change in these states.(ABSTRACT TRUNCATED AT 400 WORDS)
Considerable debate has focused on the molecular identity of the guanine-nucleotide-binding proteins (G-proteins) in adipose tissue which can be detected following pertussis-toxin-catalysed ADP-ribosylation [Rapiejko, Northup, Evans, Brown & Malbon (1986) Biochem. J. 240, 35-40; Hinsch, Rosenthal, Spicher, Binder, Gausepohl, Frank, Schultz & Joost (1988) FEBS Lett. 238, 191-196]. We have used a panel of selective anti-peptide antisera which are able to discriminate between the different pertussis-toxin-sensitive G-proteins to assess which of these are expressed in rat adipose tissue. We demonstrate that plasma membranes of rat white adipocytes contain alpha subunits corresponding to each of Gi1, Gi2 and Gi3. Furthermore, using synthetic oligonucleotides complimentary to unique regions of each of the three polypeptides, we demonstrate that the mRNAs for the three G-protein alpha subunits can also be detected in adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.