BackgroundPrograms to change health behaviours have been identified as one way to reduce health inequalities experienced by disadvantaged groups. The objective of this study was to examine the effectiveness of a behaviour change programme to increase walking and reduce sedentary behaviour of adults with intellectual disabilities.MethodsWe used a cluster randomised controlled design and recruited participants over 18 years old and not regularly involved in physical activity from intellectual disabilities community-based organisations. Assessments were carried out blind to allocation. Clusters of participants were randomly allocated to the Walk Well program or a 12-week waiting list control. Walk Well consisted of three face-to-face physical activity consultations incorporating behaviour change techniques, written resources for participants and carers, and an individualised, structured walking programme. The primary outcome measured with accelerometers was change in mean step count per day between baseline and 12 weeks. Secondary outcomes included percentage time per day sedentary and in moderate-vigorous physical activity (MVPA), body mass index (BMI), and subjective well being.ResultsOne hundred two participants in 50 clusters were randomised. 82 (80.4 %) participants completed the primary outcome. 66.7 % of participants lived in the most deprived quintile on the Scottish Index of Multiple Deprivation. At baseline, participants walked 4780 (standard deviation 2432) steps per day, spent 65.5 % (standard deviation 10.9) of time sedentary and 59 % percent had a body mass in the obesity range. After the walking programme, the difference between mean counts of the Walk Well and control group was 69.5 steps per day [95 % confidence interval (CI) -1054 to 1193.3]. There were no significant between group differences in percentage time sedentary 1.6 % (95 % CI −2.984 to 6.102), percentage time in MVPA 0.3 % (95 % CI −0.7 to 1.3), BMI −0.2 kg/m2 (95 % CI −0.8 to 0.4) or subjective well-being 0.3 (95 % CI −0.9 to 1.5).ConclusionsThis is the first published trial of a walking program for adults with intellectual disabilities. Positively changing physical activity and sedentary behaviours may require more intensive programmes or upstream approaches to address the multiple social disadvantages experienced by adults with intellectual disabilities. Since participants spent the majority of their time sedentary, home-based programmes to reduce sitting time may be a viable health improvement approach.Trial registrationCurrent Controlled Trials ISRCTN50494254Electronic supplementary materialThe online version of this article (doi:10.1186/s12966-015-0290-5) contains supplementary material, which is available to authorized users.
In our laboratories, for several years, two phenolic compounds have been detected during gas chromatographic-mass spectrometric analysis of urinary steroid extracts from human and animal species. Although features of the mass spectra of their trimethylsilyl (TMS) ether derivatives resembled those of oestrogens, they were atypical of steroids. The possibility that they were artefacts of the isolation procedures was discounted after careful studies with blanks, by varying the extraction method and because they were present almost exclusively as conjugates of glucuronic acid. Several of the general characteristics of the unknown compounds were reported after one (referred to as compound 180/442) was found to have a cyclic pattern of excretion during the menstrual cycle of an adult vervet monkey (Fig. 1). An investigation of the nature and distribution of the compounds has shown them to be urinary constituents in humans, baboons, vervet monkeys and rats, and further related compounds have been detected, so far only in vervet monkey urine. We now report spectroscopic and chemical studies that show the two original compounds to be lignans, which have a 2,3-dibenzylbutane skeleton as their basic structure. Unlike all previously known natural lignans, invariably of plant origin, the two mammalian compounds carry phenolic hydroxy groups only in the meta position of the aromatic rings.
Considerable debate has focused on the molecular identity of the guanine-nucleotide-binding proteins (G-proteins) in adipose tissue which can be detected following pertussis-toxin-catalysed ADP-ribosylation [Rapiejko, Northup, Evans, Brown & Malbon (1986) Biochem. J. 240, 35-40; Hinsch, Rosenthal, Spicher, Binder, Gausepohl, Frank, Schultz & Joost (1988) FEBS Lett. 238, 191-196]. We have used a panel of selective anti-peptide antisera which are able to discriminate between the different pertussis-toxin-sensitive G-proteins to assess which of these are expressed in rat adipose tissue. We demonstrate that plasma membranes of rat white adipocytes contain alpha subunits corresponding to each of Gi1, Gi2 and Gi3. Furthermore, using synthetic oligonucleotides complimentary to unique regions of each of the three polypeptides, we demonstrate that the mRNAs for the three G-protein alpha subunits can also be detected in adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.