The L1 major capsid protein of human papillomavirus (HPV) type 11, a 55-kDa polypeptide, forms particulate structures resembling native virus with an average particle diameter of 50 -60 nm when expressed in the yeast Saccharomyces cerevisiae. We show in this report that these virus-like particles (VLPs) interact with heparin and with cell-surface glycosaminoglycans (GAGs) resembling heparin on keratinocytes and Chinese hamster ovary cells. The binding of VLPs to heparin is shown to exhibit an affinity comparable to that of other identified heparin-binding proteins. Immobilized heparin chromatography and surface plasmon resonance were used to show that this interaction can be specifically inhibited by free heparin and dextran sulfate and that the effectiveness of the inhibitor is related to its molecular weight and charge density. Sequence comparison of nine human L1 types revealed a conserved region of the carboxyl terminus containing clustered basic amino acids that bear resemblance to proposed heparin-binding motifs in unrelated proteins. Specific enzymatic cleavage of this region eliminated binding to both immobilized heparin and human keratinocyte (HaCaT) cells. Removal of heparan sulfate GAGs on keratinocytes by treatment with heparinase or heparitinase resulted in an 80 -90% reduction of VLP binding, whereas treatment of cells with laminin, a substrate for ␣ 6 integrin receptors, provided minimal inhibition. Cells treated with chlorate or substituted -D-xylosides, resulting in undersulfation or secretion of GAG chains, also showed a reduced affinity for VLPs. Similarly, binding of VLPs to a Chinese hamster ovary cell mutant deficient in GAG synthesis was shown to be only 10% that observed for wild type cells. This report establishes for the first time that the carboxyl-terminal portion of HPV L1 interacts with heparin, and that this region appears to be crucial for interaction with the cell surface.
Hepatitis B surface antigen (HBsAg) has been extracted from yeast cells that produce HBsAg. These cells contain the gene for surface antigen carried on a plasmid that replicates in the cells. Analysis of the yeast-derived HBsAg by sucrose gradient centrifugation and by polyacrylamide gel electrophoresis shows that the antigen that is initially released from yeast cells is a high molecular weight aggregate of the fundamental Mr 25,000 subunit. Unlike HBsAg derived from human plasma, the yeast antigen is held together by noncovalent interactions and can be dissociated in 2% NaDodSO4 without the use of reducing agents. During in vitro purification of the yeast antigen, some disulfide bonds form spontaneously between the antigen subunits, resulting in a particle composed of a mixture of monomers and disulfide-bonded dimers. Treatment with 3 M thiocyanate converts the 20-nm particles into a fully disulfide-bonded form that is not disrupted in NaDodSO4 unless a reducing agent is added. This disulfidebonded particle resembles the naturally occurring, plasmaderived surface antigen particle, and the in vitro formed particle has been used to prepare a vaccine for humans against hepatitis B virus infection.
It has been shown previously that immunization of animals with recombinant virus-like particles (VLPs) consisting of the viral capsid proteins L1 or L1 plus L2 protected animals against experimental viral challenge. However, none of these experimental models addresses the issue of whether systemic immunization with VLPs elicits a neutralizing antibody response in the genital mucosa. Such a response may be necessary to protect the uterine cervix against infection with genital human papillomavirus (HPV) types. African green monkeys systemically immunized with HPV-11 VLPs expressed in Saccharomyces cerevisiae and formulated on aluminum adjuvant elicited high-titered HPV-11 VLP-specific serum antibody responses. Sera from these immunized monkeys neutralized HPV-11 in the athymic mouse xenograft system. Significant levels of HPV-11-neutralizing antibodies also were observed in cervicovaginal secretions. These findings suggest that protection against HPV infection of the uterine cervix may be possible through systemic immunization with HPV VLPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.