Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high‐latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo‐aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high‐nutrient, low‐chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high‐latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year‐round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high‐latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.
ABSTRACT. High-latitude atmospheric warming is impacting freshwater cycling, requiring techniques for monitoring the hydrology of sparsely-gauged regions. The submarine runoff of tidewater glaciers presents a particular challenge. We evaluate the utility of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for monitoring turbid meltwater plume variability in the glacier lagoon Jökulsárlón, Iceland, for a short interval before the onset of the main melt season. Total Suspended Solids concentrations (TSS) of surface waters are related to remotely-sensed reflectance via empirical calibration between in-situ-sampled TSS and reflectance in a MODIS band 1-equivalent wavelength window. This study differs from previous ones in its application to an overturning tidewater glacier plume, rather than one derived from river runoff. The linear calibration improves on previous studies by facilitating a wider range of plume metrics than areal extent, notably pixel-by-pixel TSS values. Increasing values of minimum plume TSS over the study interval credibly represent rising overall turbidity in the lagoon as melting accumulates. Plume extent responds principally to consistently-strong offshore winds. Further work is required to determine the temporal persistence of the calibration, but remote plume observation holds promise for monitoring hydrological outputs from ungauged or ungaugeable systems.
Postgraduate students are at the forefront of geographical research, forging their career in a rapidly changing landscape. The ideology of geography as a single discipline is being erased, enabling complex geographical questions spanning both natural and social sciences to be properly addressed. A postgraduate event organised in a thematic manner, rather than by discipline, reveals that postgraduate students still associate with ‘human’ or ‘physical’ geography, rather than with interdisciplinary work. However, students who overcome time constraints and have exposure to, or engage with, interdisciplinary research gain valuable transferable skills, enhancing research outputs and employability. Therefore, postgraduate perceptions of interdisciplinary research are important for geography to advance.
A scientific team aboard the R/V Maurice Ewing conducted a fine‐scale examination of the hydrogeology of two areas of active venting in Middle Valley, northern Juan de Fuca Ridge. Earlier expeditions had identified moderate‐to‐high temperature vent activity at the two sites, as well as by‐products of hydrothermal processes: sediment alteration; massive, disseminated sulfide deposits; and extensive vent faunal communities. Preliminary analyses of new data reflecting fluid, heat, and chemical fluxes suggest that the flows are complex in their distributions, have a significant hydrothermal recharge within the vent areas, and may be more vigorous than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.