In this article is proposed a new method to estimate the diameter of jet grouting columns. The method uses the largest data collection of column diameters measured to date and includes a large amount of new data that fills the existing gap of data for high injection energies. The dataset was analysed using a deep neural network that took into account the problem's key parameters (i.e. type of soil, soil resistance, type of jet and specific energy in the nozzle). As a result, three different neural networks were selected, one for each type of jet, according to the errors and consistency associated with each. Finally, using the trained networks, a number of design charts were developed to determine the diameter of a jet grouting column as a function of the soil properties and the jet system. These charts allow generating an optimal jet grouting design, improving the prediction of the diameter of jet columns especially in the high energy triple fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.