The structure of the chiral kinked Pt531 surface has been determined by low-energy electron diffraction intensity-versus-energy (LEED-IV) analysis and density functional theory (DFT). Large contractions and expansions of the vertical interlayer distances with respect to the bulk-terminated surface geometry were found for the first six layers (LEED: d12 = 0.44 A, d23 = 0.69 A, d34 = 0.49 A, d45 = 0.95 A, d56 = 0.56 A; DFT: d12 = 0.51 A, d23 = 0.55 A, d34 = 0.74 A, d45 = 0.78 A, d56 = 0.63 A; dbulk = 0.66 A). Energy-dependent cancellations of LEED spots over unusually large energy ranges, up to 100 eV, can be explained by surface roughness and reproduced by applying a model involving 0.25 ML of vacancies and adatoms in the scattering calculations. The agreement between the results from LEED and DFT is not as good as in other cases, which could be due to this roughness of the real surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.