FoxO transcription factors play a conserved role in longevity and act as tissue-specific tumor suppressors in mammals. Several nodes of interaction have been identified between FoxO transcription factors and p53, a major tumor suppressor in humans and mice. However, the extent and importance of the functional interaction between FoxO and p53 have not been fully explored. Here, we show that p53 transactivates the expression of FoxO3, one of the four mammalian FoxO genes, in response to DNA damaging agents in both mouse embryonic fibroblasts and in thymocytes. We show that p53 transactivates FoxO3 in cells by binding to a site in the second intron of the FoxO3 gene, a genomic region recently found to be associated with extreme longevity in humans. While FoxO3 is not necessary for p53-dependent cell cycle arrest, FoxO3 appears to modulate p53-dependent apoptosis. We also find that FoxO3 loss does not interact with p53 loss for tumor development in vivo, although the tumor spectrum of p53 deficient mice may be affected by FoxO3 loss. Our findings indicate that FoxO3 is a p53 target gene, and suggest that FoxO3 and p53 are part of a regulatory transcriptional network that may play an important role during aging and cancer.
Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion products that are tumor driving. To identify such events we analyzed a series of neuroblastomas by comparative genomic hybridization and single-nucleotide polymorphism arrays and integrated these data with Affymetrix mRNA profiling data with the bioinformatic tool R2 (http://r2.amc.nl). We identified three neuroblastoma samples with small interstitial deletions at 11q23, upstream of the forkhead-box R1 transcription factor (FOXR1). Genes at the proximal side of the deletion were fused to FOXR1, resulting in fusion transcripts of MLL-FOXR1 and PAFAH1B2-FOXR1. FOXR1 expression has only been detected in early embryogenesis. Affymetrix microarray analysis showed high FOXR1 mRNA expression exclusively in the neuroblastomas with micro-deletions and rare cases of other tumor types, including osteosarcoma cell line HOS. RNAi silencing of FOXR1 strongly inhibited proliferation of HOS cells and triggered apoptosis. Expression profiling of these cells and reporter assays suggested that FOXR1 is a negative regulator of fork-head box factormediated transcription. The neural crest stem cell line JoMa1 proliferates in culture conditional to activity of a MYC-ER transgene. Over-expression of the wild-type FOXR1 could functionally replace MYC and drive proliferation of JoMa1. We conclude that FOXR1 is recurrently activated in neuroblastoma by intrachromosomal deletion/fusion events, resulting in overexpression of fusion transcripts. Forkhead-box transcription factors have not been previously implicated in neuroblastoma pathogenesis. Furthermore, this is the first identification of intrachromosomal fusion genes in neuroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.