Bernstein–Greene–Kruskal (BGK) equilibria for a Vlasov plasma consisting of a periodic structure exhibiting depressions or ‘‘holes’’ in phase space are under consideration. Marginal stability analysis indicates that such structures are unstable when the system contains at least two holes. An Eulerian numerical code is developed allowing noiseless information on the long time phase space behavior (about 103ω−1p) to be obtained. Starting with equilibria with up to six holes, it is shown that the final state is given by a structure with only one large hole, the initial instability inducing coalescences of the different holes. On the other hand, starting with a homogeneous two-stream plasma it is shown that, in a first step, a BGK periodic structure appears with a number of holes proportional to the length of the system, followed, in a second step, by a coalescence of the holes to always end up with the above mentioned one large hole structure.
A Schrödinger equation for a well potential with varying width is studied. Generalized canonical transformations are shown to transform the problem into a time-dependent harmonic oscillator problem submitted to fixed boundary conditions. This transformed problem is solved by a perturbation technique and gives the evolution of the average energy of the system according to the motion of the well. Motions corresponding to a renormalization or compaction group are shown to be solvable by separation of variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.