The relationship between thyroid function and testicular development in the rat was investigated. Hypothyroidism was induced during fetal or post-natal life by adding methimazole (MMI) to the drinking water of pregnant or lactating mothers. A group of newborn rats was treated with MMI and i.p. injections of L-tri-iodothyronine (L-T3). Hypothyroidism was shown by the reduced serum levels of total T3 and of total thyroxine (T4) in pregnant mothers and in pubertal rats. Testes were studied using light microscopy at 18 and 21 days post coitum or during puberty (21, 35 and 50 days after birth); serum levels of gonadotrophins were also evaluated in pubertal rats. Hypothyroidism had no effect on testicular development during fetal life and when induced in newborn rats it was associated at puberty with reduced serum levels of FSH and LH and with delayed maturation of the testis compared with control rats. The delay in maturation consisted of a reduction in the diameter of seminiferous tubules, and a reduction in the number of germ cells per tubule; this was associated with increased degeneration and arrested maturation of germ cells. In addition, Sertoli cells demonstrated retarded development, as indicated by a delay in the appearance of cytoplasmic lipids and in the development of a tubule lumen. Hormonal and morphological abnormalities were absent in rats treated with MMI plus L-T3. In conclusion, hypothyroidism occurring soon after birth caused reduced levels of gonadotrophins in the serum and a delay in pubertal spermatogenesis, possibly due to retarded differentiation of the Sertoli cells.
The relationship between thyroid activity and Sertoli cell function has been investigated in prepubertal rats. Male 28-day-old Wistar rats were used to prepare Sertoli cells by sequential enzyme digestion of the testes. Hypothyroidism, induced by oral administration of methimazole from the day of birth, was characterized by a severe retardation of body and testis growth and a net inhibition of the increase in Sertoli cell gamma-glutamyl transpeptidase (GGT) activity as well as in androgen-binding protein (ABP) and lactate production, which normally occur during postnatal development of Sertoli cells. The functional parameters of Sertoli cells from hypothyroid 28-day-old rats approximated to those of cells from euthyroid 15-day-old animals. These results are consistent with the impairment of protein synthesis in Sertoli cells from hypothyroid rats compared with controls. Body and testis growth were improved and Sertoli cell functions were restored with 3,3',5-tri-iodothyronine (T3) replacement therapy. An excess of T3 in the serum, induced by daily i.p. injections of T3 (100 micrograms/kg body wt) during the last week before the rats were killed, failed to induce changes in body and testis growth or in the activity of GGT and lactate dehydrogenase of Sertoli cells. Cells from hyperthyroid rats exhibited a specific decrease in ABP production. These results indicate that thyroid hormone is necessary for the postnatal maturation of Sertoli cell function and suggest a regulatory role of the hormone on gametogenic development in the prepubertal rat.
In rats fed a high fat diet (HFD), long-term administration of 3,5-diiodo-L-thyronine (T2), a naturally occurring iodothyronine, was shown to reduce body-weight gain, fat mass, and hepatic lipid accumulation. This work was aimed at investigating the mechanisms of T2 action in the liver of HFD rats. The results show that HFD induces liver lipid peroxidation and stimulates the activity of enzymes involved in hydrogen peroxide (H2O2) metabolism, catalase in particular. Moreover, quantitative RT-PCR revealed HFD-induced upregulation of the transcription factor PPAR alpha, as well as of metallothionein isoforms (MT-1 and MT-2). T2 administration prevented the HDF-induced lipid peroxidation, as well as the increase in H2O2 metabolism, and reduced the upregulation of both PPAR alpha and MT-2. These data demonstrate that in the liver of HFD rats, T2 prevents both lipid accumulation and oxidative stress associated with increased fat metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.