At the early stages of alcohol misuse in humans, changes in the regulation of anabolic and catabolic signaling pathways precede the development of skeletal muscle atrophy and manifestation of clinical symptoms of alcoholic myopathy.
Gravitational unloading is known to produce changes in the expression of a number of contractile and regulatory proteins in the soleus muscle. This applies particularly to isoforms of myosin heavy chains (MHC) and SERCA sarcoplasmic reticulum calcium pumps. Unloading increases the resting levels of extracellular calcium in soleus muscle fibers. The present study addresses verification of the hypothesis that changes in the expression of MHC and SERCA isoforms in gravitational unloading are linked with the accumulation of calcium ions in the myoplasm of muscle fibers. It is suggested that specific blockade of L-type calcium channels using nifedipine decreases the myoplasmic calcium ion concentration, thus preventing the development of changes in the expression of MHC and SERCA isoforms. A total of 36 male Wistar rats were divided into three groups: a control group, an unloading group using the Morley-Holton soleus muscle functional unloading model, and an unloading + nifedipine group, where animals received daily nifedipine (7 mg/kg/day) with their drinking water on the background of suspension. The results showed that blockade of L-type calcium channels on the background of gravitational unloading significantly decreased the extent of calcium ion accumulation in the myoplasm of soleus muscle fibers, which partly prevented the transformation of muscle fibers (in relation to the fast and slow isoforms of MHC and SERCA) to the rapid type. There was no nuclear translocation of the greater part of transcription factor NFATc1, as seen on unloading.
Gravitational unloading leads to destructive changes in the structure and function of muscle fibers. However, the role of the EMG activity level is still unclear. We measured changes caused by one- and three-day hypogravity in the following muscles: Soleus (Sol), Tibialis anterior (TA) and Gastrocnemius c.m. (MG). We used Wistar rats and Mongolian gerbils. The following parameters were assessed: the specific force of contraction of isolated fibers by tensometry, the transverse stiffness of the contractile apparatus by atomic force microscopy, and the calcium content by Fluo-4. We detected the accumulation of calcium ions in all muscles even after one-day unloading. In Sol this effect was more significant than in other muscles. After one-day of hypogravity we detected an increase in the specific force in all muscle types and species. Meanwhile, the transverse stiffness of the contractile apparatus, M-band and Z-disc increased only in fast muscles but not in Sol. After three-days of unloading, the specific force in Sol decreased, and the transverse stiffness of the contractile apparatus behaved in the same way as the force. The specific tension of fast muscle fibers decreased significantly in comparison with one-day unloading. In addition, the transverse stiffness of some areas of MG had a tendency to decrease in comparison to "one-day" unloading, although there was no such a tendency in the fibers of TA. In Mongolian gerbils the tendencies were the same as in the rats, but showed less dramatic changes. The reduction in the magnitude of changes in the Sol-MG-TA series correlates with EMG activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.