The production of hybridomas between immunologically activated T cells and malignant T-cell lines offers a potentially unlimited source of soluble T-cell-derived products. Recently, human T-T hybrids have been described; however, their use has been hampered by slow growth and chromosomal instability due at least in part to the presence of thymidine in the traditional hypoxanthine/aminopterin/thymidine (HAT) selection medium. In this report, we describe the development of a rapidly growing hypoxanthine phosphoribosyltransferase-deficient human T-cell line designated J3R7, the use of azaserine/hypoxanthine (AH) medium as an alternative selection medium to HAT medium, and the production of functional T-T hybrids by using the J3R7 line and the AH selection technique. Hybrids selected in AH medium were 4-fold greater in number and 3-fold faster in growth rate than hybrids grown in HAT medium. No stable clones were obtained from HAT cultures whereas AH-derived hybrids could be readily cloned by the method of limiting dilution. Evidence for hybridization included (i) the presence of approximately twice the number of chromosomes in hybrids than in J3R7 cells; (ii) the presence on hybrid cells of the Leu-3a surface antigen, present on normal helper T cells but not on J3R7 cells; (iii) the expression of HLA antigens of both the normal T-cell partner and the J3R7 line; and (iv) the constitutive secretion of interleukin 2 from multiple hybrid clones but not from the J3R7 cell line. Thus far, these clones have maintained their rapid growth, chromosome number, surface phenotype, and constitutive secretion of interleukin 2 for 4 months.T lymphocytes produce a variety of immunologically active mediators (lymphokines) on stimulation with antigens or mitogens (1, 2). These mediators can be divided into two broad categories: antigen nonspecific, such as growth factors for T cells (interleukin 2, IL-2) and B cells (3), and antigen-specific helper and suppressor factors (4). Due to the limited availability of these factors, knowledge of their structure and function lags far behind that of immunoglobulin, the major B-cell product. Typically, the T-cell products are derived from bulk cultures ofnormal lymphocytes stimulated with mitogens such as phytohemagglutinin (PHA) or concanavalin A (Con A). Although this approach has yielded biologically active factors, the presence of multiple lymphokines as well as the mitogens themselves have hindered large-scale preparation of homogeneous material. In mice, the propagation of T-cell clones in vitro has overcome some ofthese problems (5). In man, however, such clones have been difficult to maintain and have not yet proved to be reliable sources of lymphokines.The use of T-T hybridomas produced by the fusion of an activated T cell with a malignant T-cell line offers the theoretical advantages ofa single cell source offactor, rapid and continuous growth in the absence of exogenous growth promoters, and an unlimited supply ofproduct free ofmitogen. This technique has been used successfu...
The induction of immunoglobulin (Ig) synthesis in the autologous MLR has an absolute requirement for helper/inducer (Leu-3) T cells, whereas an excess of suppressor/cytotoxic (leu-2) cells suppresses the response. The current study was an effort to assess the immunoregulatory potential to T cells activated in the autologous mixed-leukocyte response (MLR). T cells were cultured with autologous non-T cells for 8-9 d, after which the activated T cells were fractionated into subsets with monoclonal antibodies to T cell markers and HLA-DR antigen. Each population was co-cultured in fresh autologous MLR, and on the 8th day of culture, Ig-secreting cells were measured in a reverse hemolytic plaque assay. The results show that activated Leu-2, DR+ T cells, but neither Leu-2, DR- nor Leu-3 T cells, were at least 50 times more potent as suppressors of IgM and IgG synthesis than fresh Leu-2 cells alone. The activation of this Leu-2, DR+ subpopulation required Leu-3 cells in the primary culture. Furthermore, in the absence of Leu-2 cells in the second culture, little or no suppression was observed, suggesting that the Leu-2, DR+ cells act to amplify or induce suppressor effects of fresh Leu-2 cells. This indicates that at least two distinct subpopulations of Leu-2 cells are required for maximal suppression of an immune response, and that immunoregulatory circuits analogous to those described in the mouse exist in man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.