Abstract:Multiplication is the dominant operation for many applications implemented on field-programmable gate arrays (FPGAs). Although most current FPGA families have embedded hard multipliers, soft multipliers using lookup tables (LUTs) in the logic fabric remain important. This paper presents a novel two-operand addition circuit (patent pending) that combines radix-4 partial-product generation with addition and shows how it can be used to implement two's-complement array multipliers. The circuit is specific to modern Xilinx FPGAs that are based on a 6-input LUT architecture. Proposed pipelined multipliers use 42%-52% fewer LUTs, and some versions can be clocked up to 23% faster than delay-optimized LogiCORE IP multipliers. This allows 1.72-2.10-times as many multipliers to be implemented in the same logic fabric and potentially offers 1.86-2.58-times the throughput by increasing the clock frequency.
Multiplication by a constant is a common operation for many signal, image, and video processing applications that are implemented in field-programmable gate arrays (FPGAs). Constant-coefficient multipliers (KCMs) are often implemented in the logic fabric using lookup tables (LUTs), reserving embedded hard multipliers for general-purpose multiplication. This paper describes a two-operand addition circuit from previous work and shows how it can be used to generate and add pre-computed partial products to implement KCMs. A novel method for pre-computing partial products for KCMs with a negative constant is also presented. These KCMs are then extended to have two to eight coefficients that may be selected by a control signal at runtime to implement time-multiplexed multiple-constant multiplication. Synthesis results show that proposed pipelined KCMs use 27.4% fewer LUTs on average and have a median LUT-delay product that is 12% lower than comparable LogiCORE IP KCMs. Proposed pipelined KCMs with two to eight selectable coefficients use 46% to 70% fewer LUTs than the best LogiCORE IP based alternative and most are faster than using a LogiCORE IP multiplier with a coefficient lookup function. They also outperform the state-of-the-art in the literature, using 22% to 57% fewer slices than the smallest pipelined adder graph (PAG) fusion designs and operate 7% to 30% faster than the fastest PAG fusion designs for the same operand size and number of selectable coefficients. For KCMs and KCMs with selectable coefficients of a given operand size, the placement and routing of LUTs remains the same for all positive and negative constant values, which is advantageous for runtime partial reconfiguration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.