For this study, we investigated the changes in the electrophysiological parameters of Sertoli cells in seminiferous tubules from 17 - 19 day-old rats induced by testosterone. Using conventional intracellular microelectrode techniques, we analysed the membrane potential and its input resistance. The entire tubules were fixed in a superfusion chamber continuously perfused with Krebs-Ringer bicarbonate buffer (pH 7.4, 32 degrees C). Visual control of cell impalement was achieved using an inverted microscope. The parameters analysed were passed through an amplifier and recorded using a proprietary software system. The topical application of testosterone (0.1 to 10 microM) led to an immediate (within 30 seconds) and significant dose-dependent depolarization of the membrane potential of the cell at all concentrations used. Concomitantly, the input resistance of the cell membrane underwent a significant increment at 30 seconds. These changes returned to resting values after washout. Topical administration of 17beta-estradiol or progesterone (10 microM) did not change the membrane potential. The addition of the K +ATP channel agonist diazoxide to the perfusion buffer nullified the depolarization effect of testosterone at 30 seconds. This result suggests that the immediate action of testosterone is associated with the closing of K +ATP channels, thereby depolarizing the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.