We reanalyze Oklo 149 Sm data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of α, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the 149 Sm effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient 149 Sm effective cross sections and use these values to set limits on the time variation of α. Our study resolves a contradictory situation with previous Oklo α results. Our suggested 2σ bound on a possible time variation of α over 2 billion years is stringent: −0.11 α/α 0.24, in units of 10 −7 , but model dependent in that it assumes only α has varied over time.
A new measurement of the neutron β-decay asymmetry A 0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A 0 = −0.11954(55) stat (98) Precision measurements of neutron β decay are an essential ingredient in understanding the electro-weak interaction in the light quark sector. In particular the axial-vector weak coupling constant, g A , is an important input to understanding the spin and flavor structure of the nucleon [1,2] and is being actively studied in detailed lattice QCD calculations [3,4]. It also plays an important role in a variety of astrophysical processes, including solar fusion cross sections important for energy and neutrino production in the Sun [5].The angular distribution of emitted electrons from decays of a polarized neutron ensemble can be expressed as [6]where A(E) specifies the decay asymmetry for electron energy E, v ≡ βc is the electron velocity, P is the mean neutron polarization, and θ is the angle between the neutron spin and the electron momentum. can be expressed aswhere λ ≡ g A /g V is the ratio of the vector to axial-vector weak coupling constants. Combining g A with independent measurements of the Fermi coupling constant G F , the Cabibbo-Kobayashi-Maskawa matrix element V ud , and the neutron lifetime τ n allows a precision test of the consistency of measured neutron β-decay observables [7]. The ultracold neutron asymmetry (UCNA) experiment is the first experiment to use ultracold neutrons (UCNs) in a precision measurement of neutron decay correlations. Following the publication of our earlier results [7][8][9], the UCNA Collaboration implemented a number of experimental improvements that led to reductions in both statistical and systematic uncertainties. These improvements, described below, include enhanced UCN storage, improved electron energy reconstruction, and continuous monitoring of the magnetic field in the spectrometer. This refined treatment of the systematic corrections and uncertainties begins to address issues of consistency in the world data set for A 0 .The UCNA experiment ran in 2010 using the "thin window geometry D" as described in [7,9], and collected a total of 20.6 × 10 6 β-decay events after all cuts were applied. We used the UCN source [10] Copyright by the American Physical Society. Mendenhall, M. P. ; Pattie, R. W., Jr. ; Bagdasarova, Y. ; et al., Mar 25, 2013. "Precision measurement of the neutron beta-decay asymmetry," PHYSICAL REVIEW C 87(3): 032501.
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184(32) UCN/cm 3 , a four-fold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm 3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(dn) = 3 × 10 −27 e·cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.