1. Previous experiments have shown that visual neurons in the lateral intraparietal area (LIP) respond predictively to stimuli outside their classical receptive fields when an impending saccade will bring those stimuli into their receptive fields. Because LIP projects strongly to the intermediate layers of the superior colliculus, we sought to demonstrate similar predictive responses in the monkey colliculus. 2. We studied the behavior of 90 visually responsive neurons in the superficial and intermediate layers of the superior colliculus of two rhesus monkeys (Macaca mulatta) when visual stimuli or the locations of remembered stimuli were brought into their receptive fields by a saccade. 3. Thirty percent (18/60) of intermediate layer visuomovement cells responded predictively before a saccade outside the movement field of the neuron when that saccade would bring the location of a stimulus into the receptive field. Each of these neurons did not respond to the stimulus unless an eye movement brought it into its receptive field, nor did it discharge in association with the eye movement unless it brought a stimulus into its receptive field. 4. These neurons were located in the deeper parts of the intermediate layers and had relatively larger receptive fields and movement fields than the cells at the top of the intermediate layers. 5. The predictive responses of most of these neurons (16/18, 89%) did not require that the stimulus be relevant to the monkey's rewarded behavior. However, for some neurons the predictive response was enhanced when the stimulus was the target of a subsequent saccade into the neuron's movement field. 6. Most neurons with predictive responses responded with a similar magnitude and latency to a continuous stimulus that remained on after the saccade, and to the same stimulus when it was only flashed for 50 ms coincident with the onset of the saccade target and thus never appeared within the cell's classical receptive field. 7. The visual response of neurons in the intermediate layers of the colliculus is suppressed during the saccade itself. Neurons that showed predictive responses began to discharge before the saccade, were suppressed during the saccade, and usually resumed discharging after the saccade. 8. Three neurons in the intermediate layers responded tonically from stimulus appearance to saccade without a presaccadic burst. These neurons responded predictively to a stimulus that was going to be the target for a second saccade, but not to an irrelevant flashed stimulus. 9. No superficial layer neuron (0/27) responded predictively when a stimulus would not be brought into their receptive fields by a saccade.(ABSTRACT TRUNCATED AT 400 WORDS)
Fibrous dysplasia (FD) is a non-malignant condition caused by post-zygotic, activating mutations of the GNAS gene that results in inhibition of the differentiation and proliferation of bone-forming stromal cells and leads to the replacement of normal bone and marrow by fibrous tissue and woven bone. The phenotype is variable and may be isolated to a single skeletal site or multiple sites and sometimes is associated with extraskeletal manifestations in the skin and/or endocrine organs (McCune-Albright syndrome). The clinical behavior and progression of FD may also vary, thereby making the management of this condition difficult with few established clinical guidelines. This paper provides a clinically-focused comprehensive description of craniofacial FD, its natural progression, the components of the diagnostic evaluation and the multi-disciplinary management, and considerations for future research.
We describe monozygotic twin sisters, born to consanguineous Moroccan parents, who are highly discordant for the manifestations of Gaucher disease. Both carry Gaucher genotype N188S/N188S. One has severe visceral involvement, epilepsy, and a cerebellar syndrome. Her twin does not manifest any symptoms or signs of Gaucher disease but suffers from type 1 diabetes mellitus. The concurrence of a mild Gaucher mutation with a severe phenotype, as well as the occurrence of highly discordant phenotypes in a pair of monozygotic twins, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.