Twenty-four multiparous Holstein-Friesian dairy cows were used in a replicated 4 × 4 Latin square changeover design experiment to test the effects of changing from ryegrass (Lolium perenne) silage to red clover (Trifolium pratense) silage in graded proportions on feed intakes, milk production, milk organoleptic qualities, and whole-body nitrogen partitioning. Four dietary treatments, comprising ad libitum access to 1 of 4 forage mixtures plus a standard allowance of 4 kg/d dairy concentrates, were offered. The 4 forage mixtures were, on a dry matter (DM) basis: 1) 100% grass silage, 2) 66% grass silage: 34% red clover silage, 3) 34% grass silage: 66% red clover silage, and 4) 100% red clover silage. In each of 4 experimental periods, there were 21 d for adaptation to diets and 7 d for measurements. There was an increase in both DM intakes and milk yields as the proportion of red clover in the diet increased. However, the increase in milk yield was not as great as the increase in DM intake, so that the efficiency of milk production, in terms of yield (kg) of milk per kg of DM intake, decreased. The concentrations of protein, milk fat, and the shorter chain saturated fatty acids decreased, whereas C18 polyunsaturated fatty acids (PUFA) and long-chain PUFA (C20+) increased as the proportion of red clover in the diet increased. There was little effect of dietary treatment on the organoleptic qualities of milk as assessed by taste panel analysis. There were no effects on the aroma of milk, on aftertaste, or overall liking of the milk. Milk was thicker and creamier in color when cows were fed grass silage compared with red clover silage. The flavor of milk was largely unaffected by dietary treatment. In conclusion, increasing the proportion of red clover in the diet of dairy cows increased feed intakes and milk yields, decreased the concentration of fat and protein in milk, increased PUFA for healthiness, and had little effect on milk organoleptic characteristics.
Two in situ studies were conducted to examine the use of odd-chain fatty acid profiles to study microbial colonization of freshly ingested herbage in the rumen as well as fatty acid biohydrogenation. In the first study, fresh perennial ryegrass was subjected to a range of sample preparation methods before incubation in the rumen for 2 or 7 h. In the second study, fresh perennial ryegrass was chopped into 1-cm lengths and incubated in polyester bags in the rumen for 2, 8, and 24 h. After removal of bags from the rumen, 4 different washing methods, ranging from manual squeezing to machine washing, were applied. Fatty acids were extracted from washed residues and determined, as methyl esters, by gas chromatography. The main odd-chain fatty acids (with the exception of anteiso C(15:0)) were not found in fresh grass and were useful markers of the effects of incubation time, sample preparation method, and washing method on microbial colonization/contamination. The concentration of these and other odd-chain fatty acids increased with incubation time in both studies. The results indicate rapid and continued microbial colonization of freshly ingested forages, although patterns of odd-chain fatty acids did not reveal any further information about the types of bacteria-colonizing herbage. Principal component, biplot analysis provided a useful overall description of the processes of microbial colonization and degradation of plant fatty acids on fresh herbage incubated in the rumen. Bolus formation during mastication and ingestion results in extensive damage to herbage; none of the techniques (cutting, crushing, and drying/grinding) investigated in this work was able to replicate the effects of bolus formation in the animal. The study provided further evidence of loss of unfermented feed particles through polyester bag pores, especially when feeds are dried and ground. Biohydrogenation of the polyunsaturated fatty acids of fresh herbage was used principally by solid-associated bacteria to enable them to take up high levels of trans-11 C(18:1) and C(18:0) fatty acids. Although trans-11 C(18:1) was strongly associated with bacterial markers (odd- and branched-chain fatty acids), its precursor (cis-9, trans-11 C(18:2)) was not associated with bacterial variation, suggesting that its production in the rumen under these conditions was mainly extracellular.
Three change-over design experiments investigated the origin of hydrogen sulphide in the rumen head-space gas of dairy cows, comparing the effects of single iso-S additions of methionine, cysteine and sodium sulphate, as well as the effects of single meals of fresh ryegrass or white clover. The concentration of hydrogen sulphide in rumen gas declined close to zero within 4 h after withdrawal of the previous feed. Sulphur sources were then given to cows and concentrations of hydrogen sulphide recorded in rumen head-space gas at 30-min intervals. Cysteine addition (8 g) led to a rapid (within 30 min) and a large (490 and 957 p.p.m. respectively in two experiments) increase in hydrogen sulphide concentration. Concentrations were significantly less following methionine addition. Increasing levels of cysteine addition led to significant increases in hydrogen sulphide concentrations ( P , 0.001 for the linear effect), although peak hydrogen sulphide was delayed and concentrations remained higher for longer with the highest (12 g) addition of cysteine ( P , 0.01 for the 'cysteine level' £ 'time' interaction). The increase in concentration of hydrogen sulphide from sodium sulphate was smaller (230 p.p.m.) and slower (2 h) than for cysteine. Despite the much higher intake of cystine for white clover in comparison with perennial ryegrass ( P , 0.001), there was almost no increase in hydrogen sulphide concentration in rumen head-space gas from cows fed white clover. It seems likely that this is associated with the use of sulphur to produce thiocyanate to detoxify the hydrogen cyanide from cyanogenic white clover.
The efficiency of dietary nitrogen use on ruminants fed on forage is poor and this may be largely attributed to an asynchrony between the supply of energy and nitrogen to the rumen microbes, resulting in poor microbial protein synthesis and a low efficiency of utilisation of absorbed amino acid (AA). One of the main factors contributing to the latter is the efficiency of absorption of AA from the small intestine and it has been concluded that a value of 0.75 is appropriate across a range of diets (MacRae and Reeds, 1980). However, it is uncertain how this value may vary on grass silage diets and what effect additional rumen undegradable protein may exert. The objective of this experiment was to measure body nitrogen utilisation and AA absorption from the small intestine in steers fed on grass silage or supplemented with fishmeal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.