We present the fourth Fermi Large Area Telescope catalog (4FGL) of γ-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50MeV to 1TeV, it is the deepest yet in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse γ-ray emission, and two sets of light curves (one-year and two-month intervals). The 4FGL catalog includes 5064 sources above 4σ significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall, 358 sources are considered as identified based on angular extent, periodicity, or correlated variability observed at other wavelengths. For 1336 sources, we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.
We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the Hubble Space Telescope at 5.5 days. Our data reveal a rapidly-fading blue component (T ≈ 5500 K at 1.5 days) that quickly reddens; spectra later than 4.5 days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at ∼ 7900 Å at t 4.5 days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light r-process nuclei with atomic mass number A 140. This indicates a sight-line within θ obs 45 • of the orbital axis. Comparison to models suggests ∼ 0.03 M of blue ejecta, with a velocity of ∼ 0.3c. The required lanthanide fraction is ∼ 10 −4 , but this drops to < 10 −5 in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of 12 km. This mass also supports the idea that neutron star mergers are a major contributor to r-process nucleosynthesis. arXiv:1710.05456v1 [astro-ph.HE] 16 Oct 2017 2 NICHOLL ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.