For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination of properties is usually found in heavily doped semiconductors. Renewed interest in this topic has followed recent theoretical predictions that significant increases in performance are possible for nanostructured materials, and this has been experimentally verified. During exploratory synthetic studies of chalcogenide-based bulk thermoelectric materials it was discovered that several compounds spontaneously formed endotaxially embedded nanostructures. These compounds have some of the best known properties for bulk thermoelectric materials in the 500-800 K temperature range. Here we report our continued efforts to better understand the role of the nanostructures while concurrently furthering the development of these new materials (for example n-type lead-antimony-silver-tellurium, and p-type lead-antimony-silver-tin-tellurium) into thermoelectric powergeneration devices.
A collaborative research study was conducted in order to improve our understanding of the source-to-receptor pathway for ambient fine particulate matter (aerodynamic diameter < or = 2.5 mu m; PM2.5) and subsequently to investigate the identity and sources of toxic components in PM2.5 responsible for adverse health effects in allergic humans. This research used a Harvard fine particle concentrator to expose Brown Norway rats, with and without ovalbumin-induced allergic airway disease, to concentrated air particles (CAPs) generated from ambient air in an urban Detroit community where the pediatric asthma rate was three times higher than the national average. Rats were exposed to CAPs during the exposure periods in July (mean = 676 microg/m3) and September (313 microg/m3) of 2000. Twenty-four hours after exposures lung lobes were either lavaged with saline to determine cellularity and protein in bronchoalveolar lavage fluid (BALF), or removed for analysis by inductively coupled plasma-mass spectrometry (ICP-MS) to detect ambient PM2.5-derived trace element retention. PM2.5 trace elements of anthropogenic origin, lanthanum (La), vanadium (V), manganese (Mn), and sulfur (S), were recovered from the lung tissues of CAPs-exposed rats. Recovery of those pulmonary anthropogenic particles was further increased in rats with allergic airways. In addition, eosinophils and protein in BALF were increased only in allergic animals exposed to CAPs. These results demonstrate preferential retention in allergic airways of air particulates derived from identified local combustion sources after a short-term exposure. Our findings suggest that the enhancement of allergic airway responses by exposure to PM2.5 is mediated in part by increased pulmonary deposition and localization of potentially toxic elements in urban air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.