In the flow focusing technique, a liquid flow rate Q is injected through a microcapillary to form a meniscus attached to its edge. The meniscus is stretched until a thin jet tapers from its tip due to the action of a gas stream driven by a pressure drop ⌬p. Both the liquid jet and the gas stream cross the orifice of a plate located in front of the capillary at a distance H. In the present work, the stability of both the tapering liquid meniscus and the emitted jet is analyzed experimentally. Three regimes are identified: ͑i͒ the steady jetting regime, where the liquid meniscus is stable and the jet is convectively unstable; ͑ii͒ the local instability regime, where the liquid meniscus is stable and the jet is absolutely unstable; and ͑iii͒ the global instability regime, where the liquid meniscus is unstable. The mechanisms responsible for the transitions between those regimes are described. The experiments show the existence of a minimum value Q min of the flow rate Q below which flow focusing is globally unstable independent of the pressure drop ⌬p applied to the gas stream. The dependence of the stability threshold Q min with respect to the capillary-to-orifice distance H is analyzed considering different liquids. If the rest of the geometrical parameters are fixed, there is an optimum value H opt of the capillary-to-orifice distance H for which the stability threshold Q min is minimum. We also determine the dependence of H opt and the corresponding minimum flow rate Q opt with respect to the capillary diameter. In addition, we find that Q min diverges as the capillary-to-orifice distance H decreases and approaches a certain critical value, at which the transition from flow focusing to "flow blurring" takes place. We confirm our interpretation of the experimental results by conducting numerical simulations for the aforementioned three regimes.
Polydimethylsiloxane (PDMS), due to its remarkable properties, is one of the most widely used polymers in many industrial and medical applications. In this work, a technique based on a flow focusing technique is used to produce PDMS spherical particles with sizes of a few microns. PDMS precursor is injected through a hypodermic needle to form a film/reservoir over the needle's outer surface. This film flows towards the needle tip until a liquid ligament is steadily ejected thanks to the action of a coflowing viscous liquid stream. The outcome is a capillary jet which breaks up into PDMS precursor droplets due to the growth of capillary waves producing a micrometer emulsion. The PDMS liquid droplets in the solution are thermally cured into solid microparticles. The size distribution of the particles is analyzed before and after curing, showing an acceptable degree of monodispersity. The PDMS liquid droplets suffer shrinkage while curing. These microparticles can be used in very varied technological fields, such as biomedicine, biotechnology, pharmacy, and industrial engineering. V C 2016 AIP Publishing LLC.
We present a robust and computationally efficient numerical scheme for simulating steady electrohydrodynamic atomization processes (electrospray). The main simplification assumed in this scheme is that all the free electrical charges are distributed over the interface. A comparison of the results with those calculated with a volume-of-fluid method showed that the numerical scheme presented here accurately describes the flow pattern within the entire liquid domain. Experiments were performed to partially validate the numerical predictions. The simulations reproduced accurately the experimental shape of the liquid cone jet, providing correct values of the emitted electric current even for configurations very close to the cone-jet stability limit.
The characterization of the extensional rheology of polymeric solutions is important in several applications and industrial processes. Filament stretching and capillary breakup rheometers have been developed to characterize the extensional properties of polymeric solutions, mostly for high-viscosity fluids. However, for low concentration polymer solutions, the measurements are difficult using available devices, in terms of the minimum viscosity and relaxation times that can be measured accurately. In addition, when the slow retraction method is used, solvent evaporation can affect the measurements for volatile solvents. In this work, a new setup was tested for filament breakup experiments using the slow retraction method, high-speed imaging techniques, and an immiscible oil bath to reduce solvent evaporation and facilitate particle tracking in the thinning filament. Extensional relaxation times above around 100 μs were measured with the device for dilute and semi-dilute polymer solutions. Particle tracking velocimetry was also used to measure the velocity in the filament and the corresponding elongation rate, and to compare with the values obtained from the measured exponential decay of the filament diameter.
Polydimethylsiloxane (PDMS) has a wide variety of commercial and industrial applications due to its mechanical and rheological properties in a range similar to the living tissues. In this study, we demonstrate that PDMS can be used to produce deformable microparticles to be integrated in the development of particulate blood analogue fluids. The difficulties associated with the use of in vitro blood make it necessary to perform in vitro experiments of blood flow with blood analogue fluids. However, an ideal analogue must match the rheology of blood at several points, and for that, blood analogue fluids should be a suspension of microparticles with similar properties (size, shape and flexibility) to blood cells, in particular to the red blood cells (RBCs). The microparticles used in this study were produced from a transparent PDMS with crosslinking ratios of 10:1, 8:2 and 6:4; from a black PDMS with a ratio of 1:1 and from a red-pigmented PDMS. Each PDMS microparticles sample was suspended in Dextran 40 to perform deformability assays and cell-free layer analysis in a hyperbolic-shaped microchannel and steady shear viscosity measurements in a rheometer. The proposed microparticles suspensions show a great potential to mimic the structural and rheological properties of RBC suspensions and consequently to develop blood analogue fluids with rheological properties similar to real blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.