Data from two assay systems show that the kinetics of the hydrolysis of cytidine 2': 3'-cyclic monophosphate by bovine pancreatic RNAase (ribonuclease) is not consistent with conventional models. An allosteric model involving a substrate-dependent change in the equilibrium between two enzyme conformations is proposed. Such a model gives rise to a calculated curve ofvelocity versus substrate concentration which fits the experimental data. The model is also consistent with the results of an examination of the tryptic digestion of RNAase. Substrate analogues are able to protect RNAase against hydrolysis by trypsin and the percentage of RNAase activity which remains after digestion increases sigmoidally as the analogue concentration is increased. The model also explains the pattern seen in the Km values quoted in the literature and is consistent with strong physical evidence for a ligand-induced conformational change for RNAase reported in the literature.
Adenylate kinase catalyses the equilibrium 2ADP = ATP + AMP. There are two isoenzymes of adenylate kinase in bovine ventricular tissue, one cytoplasmic, the other mitochondrial. Mitochondrial subfractionation locates this isoenzyme between the mitochondrial membranes with fatty acid-CoA ligase. The cytoplasmic and mitochondrial isoenzymes are distributed in ratio 3:2, and both forms were purified to homogeneity. They differ principally by charge, Km values for ATP, ADP and AMP, pH-stability and -activity profiles, and susceptibility to the inhibitor adenosine pentaphosphoadenosine. The forward and reverse reactions show similar energies of activation for the cytoplasmic enzyme, but differ for the mitochondrial enzyme. The molecular weights are indistinguishable. An integrated mechanism is formulated whereby one isoenzyme suppresses the activation of fatty acid and the other enhances carbohydrate utilization in hypoxic myocytes.
Evidence is presented from three experimental systems to support the allosteric model of Walker et al. (1975) (Biochem. J. 147, 425-433) which explains the substrate-concentration-dependent transition observed in the RNAase (ribonuclease)-catalysed hydrolysis of 2':3'-cyclic CMP (cytidine 2':3'-cyclic monophosphate). 1. Kinetic studies of the initial rate of hydrolysis of 2':3'-cyclic CMP show that the midpoint of the transition shifts to lower concentrations of 2':3'-cyclic CMP in the presence of the substrate analogues 3'-CMP, 5'-CMP, 3'-AMP, 3'-UMP and Pi; 2'-CMP and 2'-UMP do not cause such a shift. 2. Trypsin-digestion studies show that a conformational change in RNAase to a form less susceptible to tryptic inactivation is induced in the presence of the substrate analogues 3'-CMP, 5'-CMP, 3'-AMP, and 3'-UMP. 2'-CMP, 2'-AMP and 2'-UMP do not induce this conformational change. 3. Equilibrium-dialysis experiments demonstrate the multiple binding of molecules of 3'-CMP, 3'-AMP and 5'-AMP to a molecule of RNAase. 2'-CMP binds the ratio 1:1 over the analogue concentration range studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.