Recent studies on plant immunity have suggested that a pathogen should suppress induced plant defense in order to infect a plant species, which otherwise would have been a nonhost to the pathogen. For this purpose, pathogens exploit effector molecules to interfere with different layers of plant defense responses. In this review, we summarize the latest findings on plant factors that are activated by pathogen effectors to suppress plant immunity. By looking from a different point of view into host and nonhost resistance, we propose a novel breeding strategy: disabling plant disease susceptibility genes (S-genes) to achieve durable and broad-spectrum resistance.
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.
In the European Union almost 6 Mha of potatoes are grown representing a value of close to €6,000,000,000. Late blight caused by Phytophthora infestans causes annual losses (costs of control and damage) estimated at more than €1,000,000,000. Chemical control is under pressure as late blight becomes increasingly aggressive and there is societal resistance against the use of environmentally unfriendly chemicals. Breeding programmes have not been able to markedly increase the level of resistance of current potato varieties. New scientific approaches may yield genetically modified marker-free potato varieties (either trans-and/or cisgenic, the latter signifying the use of indigenous resistance genes) as improved variants of currently used varieties showing far greater levels of resistance. There are strong scientific investments needed to develop such improved varieties but these varieties will have great economic and environmental impact. Here we present an approach, based on (cisgenic) resistance genes that will enhance the impact. It consists of five themes: the detection of R-genes in the wild potato gene pool and their function related to the various aspects in the infection route and reproduction of the late blight causing pathogen; cloning of natural R-genes and transforming cassettes of single or multiple (cisgenic) R-genes into existing varieties with proven adaptation to improve their value for consumers; selection of true to the wild type and resistant genotypes with similar qualities as the original variety; spatial and temporal resistance management research of late blight of the cisgenic genetically modified (GM) varieties that contain different cassettes of R-genes to avoid breaking of resistance and reduce build- the different nature and possible biological improvement and legislative repercussions of cisgenic GM-crops in comparison with transgenic GM-crops. It is important to realize that the present EU Directive 2001/18/EC on GM crops does not make a difference between trans-and cisgenes. These rules were developed when only transgenic GM plants were around. We present a case arguing for an updating and refinement of these rules in order to place cisgenic GM-crops in another class of GMplants as has been done in the past with (induced) mutation breeding and the use of protoplast fusion between crossable species.
SummaryComparative genomics provides a tool to utilize the exponentially increasing sequence information from model plants to clone agronomically important genes from less studied crop species. Plant disease resistance (R) loci frequently lack synteny between related species of cereals and crucifers but appear to be positionally well conserved in the Solanaceae. In this report, we adopted a local RGA approach using genomic information from the model Solanaceous plant tomato to isolate R3a, a potato gene that confers race-specific resistance to the late blight pathogen Phytophthora infestans. R3a is a member of the R3 complex locus on chromosome 11. Comparative analyses of the R3 complex locus with the corresponding I2 complex locus in tomato suggest that this is an ancient locus involved in plant innate immunity against oomycete and fungal pathogens. However, the R3 complex locus has evolved after divergence from tomato and the locus has experienced a significant expansion in potato without disruption of the flanking colinearity. This expansion has resulted in an increase in the number of R genes and in functional diversification, which has probably been driven by the co-evolutionary history between P. infestans and its host potato. Constitutive expression was observed for the R3a gene, as well as some of its paralogues whose functions remain unknown.
Potato is an important crop, grown worldwide. It suffers from many pests and diseases among which late blight, caused by the oomycete Phytophthora infestans, is the worst. The disease is still causing major damage in many potato production areas and control is only possible by applying fungicides frequently. The knowledge on the molecular biology and genetics of the interaction between the plant and the oomycete is developing rapidly. These are relevant fields of study, currently dominated by the discovery of many resistance genes and numerous effector proteins and the analysis of their specific mode of action. These studies may yield essential information needed for the development of durable resistance. The long-term and worldwide effort to breed for resistance so far has had little effect. A novel breeding approach may change this. It is based on cisgenic modification (CM) consisting of marker-free pyramiding of several resistance genes and their spatial and temporal deployment yielding dynamic varieties that contain potato genes only. It is envisioned that this CM approach with potato's own genes will not only prove societally acceptable but may also result in simplifications in the legislation on use of the CM approach. Various parties in the potato research arena intend to cooperate in this novel approach in a number of developing countries where potato substantially contributes to food security. The use of resources such as land, water and energy improves when the effect of late blight is markedly reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.