Interaction of the physically adsorbed molecular hydrogen with a breaking gold nanowire results in additional stable atomic configurations in few atom contacts and appearance of fractional peaks in the conductance histogram. This effect is explained by peculiar dynamic evolution of the hydrogen-embedded nanoconstriction due to competition between tensile and capillary forces. Dimerization within the atomic wire and hydrogen-assisted stabilization of gold dimers results in preferable atomic arrangements with conductivity close to 0.5 and 1.5 of quantum conductance unit G(0)=2e(2)/h.
We apply the mechanically controllable break junctions technique to
investigate the transition from tunneling to direct contact in tungsten. This
transition is quite different from that of other metals and is determined by
the local electronic properties of the tungsten surface and the relief of the
electrodes at the point of their closest proximity. The conductance traces show
a rich variety of patterns from the avalanche-like jump to a mesoscopic contact
to the completely smooth transition between direct contact and tunneling. Due
to the occasional absence of an adhesive jump the conductance of the contact
can be continuously monitored at ultra-small electrode separations. The
conductance histograms of tungsten are either featureless or show two distinct
peaks related to the sequential opening of spatially separated groups of
conductance channels. The role of surface states of tungsten and their
contribution to the junction conductance at sub-Angstrom electrode separations
are discussed.Comment: 6 pages, 6 figure
The pitch accuracy of a grating formed by laser-focused atomic deposition is evaluated from the point of view of fabricating nanoscale pitch standard artifacts. The average pitch obtained by the process, nominally half the laser wavelength, is simply traceable with small uncertainty to an atomic frequency and hence can be known with very high accuracy. An error budget is presented for a Cr on sapphire sample, showing that a combined standard uncertainty of 0.0049 nm, or a relative uncertainty of 2.3 × 10−5, is readily obtained, provided the substrate temperature does not change. Precision measurements of the diffraction of the 351.1 nm argon ion laser line from such an artifact are also presented. These yield an average pitch of (212.7777 ± 0.0069) nm, which agrees well with the expected value, as corrected for thermal contraction, of (212.7705 ± 0.0049) nm.
We fabricate iron nanolines by depositing an atomic beam of iron through a far-off resonant laser standing wave (SW) onto a glass-ceramic substrate. The laser SW is tuned 200MHz above the D45→F5o5Fe56 transition at a vacuum wavelength of 372.099nm. The resulting nanolines exhibit a period of 186nm, a height above the background of 8nm and a full width at half maximum of 95nm. These nanostructures cover a surface area of ≃1.6×0.4mm2, corresponding to ≃8600 iron lines with a length of ≃400μm.
Spectroscopic magnetization-induced optical second harmonic Generation (MSHG) measurements from a clean Ni(110) surface reveal strong resonance effects near 2.7 eV that can be attributed to the presence of an empty surface state. The good agreement with model calculations shows the potential of MSHG to probe spin-polarized interface band structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.