The potential to improve the tribomechanical performance of HVOF-sprayed WC-12Co coatings was studied by using aqueous WC-12Co suspensions as feedstock. Both as-sprayed and hot-isostatic-pressed (HIPed) coatings were studied. Mathematical models of wear rate based on the structure property relationships, even for the conventionally sprayed WC-Co hardmetal coatings, are at best based on the semiempirical approach. This paper aims to develop these semiempirical mathematical models for suspension sprayed nanocomposite coatings in as-sprayed and heat-treated (HIPed) conditions. Microstructural evaluations included transmission electron microscopy, X-ray diffraction and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. The nanohardness and modulus of the coated specimens were investigated using a diamond Berkovich nanoindenter. Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that the HIPing post-treatment resulted in crystallization of amorphous coating phases and increase in elastic modulus and hardness. Influence of these changes in the wear mechanisms and wear rate is discussed. Results are also compared with conventionally sprayed high-velocity oxy-fuel hardmetal WC-Co coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.