Biological synthesis of silver nanoparticles using microorganisms has received profound interest because of their potential to synthesize nanoparticles of various size, shape and morphology. In the current study, synthesis of silver nanoparticles by a bacterial strain (CS 11) isolated from heavy metal contaminated soil is reported. Molecular identification of the isolate showed it as a strain of Bacillus sp. On treating the bacteria with 1 mM AgNO3, it was found to have the ability to form silver nanoparticles extracellularly at room temperature within 24 h. This was confirmed by the visual observation and UV–Vis absorption at 450 nm. Further characterization of nanoparticles by transmission electron microscopy confirmed the size of silver nanoparticles in 42–92 nm range. Therefore, the current study is a demonstration of an efficient synthesis of stable silver nanoparticle by a Bacillus strain.
Destroying aromaticity: A novel prenyltransferase (Trt2) involved in fungal meroterpenoid biosynthesis was shown to catalyze an unusual aromatic addition reaction onto a fully substituted aromatic ring. The prenylated product serves as a key intermediate in the biosynthesis of the most abundant series of meroterpenoids in fungi.
Various methods have been used to enhance production of chemically diverse phytochemicals especially medicinal natural products. With the advancement in nanotechnology, nanoparticles have been reported to have varying impact in plant growth and inducibility of phytochemical composition. Major objective of the study was to study the secondary metabolite modulatory effect of silver nanoparticles. In the current study, treatment of fenugreek seedlings with biosynthesized silver nanoparticles (Ag-NPs) was found to have significant impact on its growth parameters such as leaf number, root length, shoot length and wet weight. On HPLC based analysis, Ag-NPs treated seedlings showed an enhancement in the production of major phytochemical diosgenin to a level of 214.06 ± 17.07 μg/mL. An untreated control gave an yield of only 164.44 ± 7.67 μg/mL of diosgenin, and the observed phytochemical enhancement effect induced by Ag-NP was very significant. Most remarkably, the Ag-NP used in the study was found to play dual role of enhancement of both plant growth and diosgenin synthesis. Hence the study is of immense application as it opens up development of new methods based on nanoelicitors to enhance the biosynthesis of medicinal natural products in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.