Aims: The present study was investigated to optimize and partially purify the proteases produced by the food borne bacterial strains. Methodology and Results: Four bacterial strains such as Bacillus cereus, Proteus vulgaris, P. mirabilis and Enterobacter aerogenes were isolated from food wastes. These strains were individually inoculated in to the formulated culture media supplied with three different concentrations (1:1 to 1:3) of raw milk as major substrate. Among the concentrations, 1:2 ratio of substrate supplied medium showed maximum (0.133 to 8.000 IU/mL) protease production by all the tested organisms. After optimization, the organisms were tested for protease production at various pH (3 to 9), and temperature (30 to 80 °C). The result showed that all the organisms were capable of producing maximum protease at pH 6 (8.533 to 10.133 IU/mL) and at 50 °C (8.666 to 10.666 IU/mL). The crude enzymes produced by the tested organisms were individually purified by two different methods viz sodium alginate and ammonium sulphate-butanol methods. The purity of the protease determined in these two methods was ranged between 3.24 to 5.44 I and 3.13 to 5.55 IU/mL respectively. The partially purified enzymes were further analysed through SDS-PAGE; accordingly the molecular weight of protein produced by the test organisms was determined in between 49.44 and 50.98 kDa. Conclusion, significance and impact of study: Among the tested strains P. vulgaris was identified as the major protease producer in optimized culture condition of 50 o C and pH6. The molecular mass of the partially purified protease of P. vulgaris was 50.32 KDa. Further research on optimization of other fermentation parameters using statistical tools with P. vulgaris is needed to scale up the process.
Bioluminescence is a biochemical process occurring in many organisms. Bacterial bioluminescence has been investigated extensively that lead to many applications of such knowledge. Quorum sensing in the bioluminescent bacteria is a chemical signal process to recognize the strength of its own population to start luminescence in harmony. There is a mechanism in these bacteria to also recognize inter-species strength. When there is a higher number of these bacteria, the possibility and frequency of cell-cell physical contact will be high. In this study, the physical proximity was artificially enhanced between cells and the effect on luminescence in the concentrated cells in the normal culture medium and in the presence of other non-bacterial cell-free supernatants was investigated. The role of such physical contact in the quorum sensing in the bioluminescence is not known. Increase in the luminescence of V. fischeri when concentrated shows that the presence of physical proximity facilitates the quorum sensing for their bioluminescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.