This paper compares how a dc fault affects a multiterminal dc (MTdc) network depending on the HVDC transmission system topology. To this end, a six-step methodology is proposed for the selection of the necessary dc fault protection measures. The network consists of four voltage-source converters converters radially connected. The converters natural fault response to a dc fault for the different topologies is studied using dynamic simulation models. For clearing of the dc faults, four different dc breaker technologies are compared based on their fault interruption time, together with a current direction fault detection method. If necessary, the converters are reinforced with limiting reactors to decrease the peak value and rate of rise of the fault currents providing sufficient time for the breakers to isolate the fault without interrupting the MTdc network operation. The study shows that the symmetric monopolar topology is least affected by dc contingencies. Considering bipolar topologies, the bipolar with metallic return exhibits better fault response compared to the one with ground return. Topologies with ground or metallic return require full semiconductor or hybrid breakers with reactors to successfully isolate a dc fault.
a b s t r a c tIt is anticipated that with the thrust towards use of clean energy resources such as electric vehicles, future distribution grids will face a steep increase in power demand, forcing the utility operators to invest in enhancing the power delivering capacity of the grid infrastructure. It is identified that the critical 5-20 km medium voltage (MV) underground ac distribution cable link, responsible for bulk power delivery to the inner urban city substation, can benefit the most with capacity and efficiency enhancement, if the existing infrastructure is reused and operated under dc. Quantification of the same is offered in this paper by incorporating all influencing factors like voltage regulation, dc voltage rating enhancement, capacitive leakage currents, skin and magnetic proximity effect, thermal proximity effect and load power factor. Results are presented for three different ac and dc system topologies for varying cable lengths and conductor cross-sections. The computed system efficiency is enhanced with use of modular multilevel converters that have lower losses due to lower switching frequency. A justified expectation of 50-60% capacity gains is proved along with a generalized insight on its variations that can be extrapolated for different network parameters and configurations. Conditions for achieving payback time of 5 years or lower due to energy savings are identified, while the socio-economic benefits of avoiding digging and installing new cable infrastructure are highlighted. The technical implications of refurbishing cables designed for ac to operate under dc conditions is discussed in terms of imposed electric fields, thermal profile and lifetime. A novel opportunity of temperature dependent dynamic dc voltage rating to achieve additional capacity and efficiency gains is presented.
Abstract-This paper presents a breaker arrangement concept, the Multi-Line Breaker (MLB), for the protection of multiterminal high voltage dc (MTdc) networks. Based on the design of a hybrid breaker, the MLB is an economically attractive solution for the protection of multiple dc lines in nodal connection using a single main breaker path. By using commutation units, the MLB directs the fault current through the main breaker in a unidirectional way, irrespective of the fault location. Hence, this study presents the design requirements for the MLB, regarding both hardware and control, and evaluates its operation within a grid. For this reason, a four-terminal half-bridge MMC-based MTdc grid in radial configuration was used and pole-to-ground dc fault conditions were investigated. The dc fault response of the grid with one MLB at the central node is compared to the respective response of the grid when one hybrid breaker is employed at each dc line. The simulations show that the MLB is feasible and that the overall MTdc grid fault response for the two protection systems is very similar. As a result, the design advantages of the MLB make it a promising solution for the dc fault isolation in MTdc grids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.