Phosphoenolpyruvate carboxylase of Escherichia coli is activated by three different mechanisms: contiguous by acetyl coenzyme A, precursor by fructose 1,6-bisphosphate, and compensatory feedback by cytidine 5'-diphosphate (CDP). Even though each activator can interact independently with the enzyme, synergistic effects are observed with some combinations, namely, fructose 1,6-bisphosphate or CDP (coregulators), with acetyl coenzyme A. A mutant was isolated that has a phosphoenolpyruvate carboxylase which is refractory to activation by fructose, 1,6-bisphosphate and CDP. The mutant enzyme was shown to be active primarily as the dimer and to lack cooperativity in substrate binding. The binding of acetyl coenzyme A and substrate, however, was essentially the same as that of the wild-type enzyme. The mutant cells grew extremely slowly on glucose alone as the sole carbon source. The only defect in the mutant appeared to be the inability of this enzyme to be activated by the coregulators. These data are consistent with the thesis that coregulation by fructose 1,6-bisphosphate or CDP is an essential requirement for the activation in vivo of this enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.