Prediction of anion adsorption behavior is enhanced by understanding the adsorption mechanism. This study was conducted to evaluate ionic strength effects on B adsorption and to infer B adsorption mechanisms on various surfaces. Boron adsorption on the Fe oxide goethite, the Al oxide gibbsite, the clay minerals kaolinite and montmorillonite, and two arid-zone soils was investigated as a function of solution pH (3-11) and ionic strength of the background electrolyte (0.01-1.0 M NaCl). Boron adsorption on the oxides and kaolinite increased from pH 3 to 6, exhibited a peak at pH 6 to 8.5, and decreased from pH 8.5 to 11. For B adsorption on montmorillonite and the soils, the adsorption maximum was located near pH 9. Ionic strength dependence, measured as the increase of the B adsorption maximum in 1.0 M NaCl solutions compared with 0.01 M NaCl solutions increased in the order: goethite (3%) < kaolinite (15%) < gibbsite (-30%) < montmorillonite (109%) ~ montmorillonitic soil (116%) = kaolinitic soil (129%). Shifts in zero point of charge were observed on goethite, gibbsite, and kaolinite following B adsorption. Ionic strength effect results suggest an inner-sphere adsorption mechanism for goethite, gibbsite, and kaolinite and an outer-sphere adsorption mechanism for montmorillonite and the soils. These mechanisms are also indicated by zero point of charge determinations, microelectrophoresis measurements, or both. The constant capacitance model, containing an inner-sphere adsorption mechanism, was able to describe B adsorption on goethite, gibbsite, kaolinite, and kaolinitic soil. The model was unable to describe B adsorption on montmorillonite and montmorillonitic soil because the computer optimizations diverged.
Abstract--The effect of electrolyte concentration, exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and pH on the flocculation-dispersion behavior of 50/50 mixtures of reference illite with reference kaolinite or reference montmorillonite was investigated. The clays were Na-or Ca-saturated and freeze-dried before use. Critical coagulation concentrations (CCCs) were investigated in the range of pH 5.9 to 9.6, percent Na-clay 0, 10, 20, 40, 60, 80, and 100 and SAR 0, 10, 20, 40, 60, 80, and co. CCC values increased with increasing ESP, increasing SAR, and increasing pH. The pH dependence of illite/kaolinite was greater than that ofillite/montmorillonite especially at high ESP and SAR. The presence of illite did not play a dominant role in determining flocculation-dispersion behavior of the 50/50 clay mixtures. The CCCs of illite/kaolinite resembled reference illite more than reference kaolinite for SAR 0 to SAR 60. Illite/montmorillonite exhibited CCCs more similar to reference illite than reference montmorillonite at SAR 40 and SAR 60. At the agriculturally desirable ESP and SAR values of 0 to 15, all the 2:1 clays and 2:1 clay mixtures demonstrated similar CCC values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.