A description of spin Faraday rotation, Kerr rotation and ellipticity signals for single-and multilayer ensembles of singly charged quantum dots (QDs) is developed. The microscopic theory considers both the single pump-pulse excitation and the effect of a train of such pulses, which in the case of long resident-electron spin coherence time leads to a stationary distribution of the electron spin polarization. The calculations performed for single-color and two-color pump-probe setups show that the three experimental techniques: Faraday rotation, Kerr rotation and ellipticity measurements provide complementary information about an inhomogeneous ensemble of QDs. The microscopic theory developed for a three-dimensional ensemble of QDs is shown to agree with the phenomenological description of these effects. The typical time-dependent traces of pump-probe Faraday rotation, Kerr rotation and ellipticity signals are calculated for various experimental conditions.
We show that the sign of the circular photogalvanic effect can be changed by tuning the radiation frequency of circularly polarized light. Here resonant inversion of the photogalvanic effect has been observed for direct inter-subband transition in n-type GaAs quantum well structures. This inversion of the photon helicity driven current is a direct consequence of the lifting of the spin degeneracy due to k-linear terms in the Hamiltonian in combination with energy and momentum conservation and optical selection rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.