Mismatch detection is the process of identification of rare stimuli from a sequence of stimuli. This important cognitive function is usually attributed to the cerebral cortex. To test the human midbrain involvement in sound mismatch detection, we recorded local field potentials in the states of deep anesthesia and clear consciousness from the drainage-electrode implanted in the cerebral aqueduct of an adult patient with an obstructive hydrocephaly who had undergone pineal region tumor removal through anterior interhemispheric transcallosal approach. We found a significant difference in the state of deep anesthesia at 256-364 ms after hearing a rarely presented sounds compared with frequently presented sounds and equally probable sounds. This difference was not found in the same experiment in the state of clear consciousness. The results suggest that human midbrain participates in mismatch detection and can do it even without cognitive activity of the cerebral cortex. Amplitude-frequency analysis of the midbrain records revealed that propofol affects the electrical activity of both human midbrain and cortex but the level of inhibition of the cortex is 6 times higher than the level of inhibition of the midbrain. We suppose that the human cortex is more susceptible to propofol than the human midbrain.
Background: Mild traumatic brain injury (mTBI) is one of the most common forms of cerebral pathology in young people and disorders involve dysfunctions in cognitive and motor spheres. We would like to examine the structural and functional alterations of the brain in patients with mTBI while performing hand movements. Methods: Twenty healthy right-handed subjects (age 25.1 ± 3.9) and 10 patients (age 27.9 ± 7.3) with mTBI without hemiparesis participated in the study using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). FMRI and EEG reactions were analysed during right-and left-hand movements. Results: It was shown that fMRI reactive changes have a larger inter-individual variability of activation during left-hand movements in comparison with right-hand ones in healthy subjects. The TBI patients demonstrated an increase of a diffuse component of fMRI reactive changes compared to healthy people. A greater number of the brain structures was involved, mainly at the subcortical level, mostly in the left hemisphere during right-hand movement. EEG study demonstrated coherence changes for the slow (delta) frequency bands in the left hemisphere, while performing both hand movements. In healthy persons, EEG coherence changes were observed in the fast (alhpa2) frequency band predominantly in contralateral hemispheres, while performing hand movements. Conclusion: So, fMRI and EEG studies revealed the most expressed pathological reactive changes in the left hemisphere and the brain cortical structures during right-hand movements in patients after mTBI. These data allowed us to propose that the younger brain structures were the most sensitive to mTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.