Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.
ABSTRACT. The critical role that the major histocompatibility complex plays in the immune recognition of parasites and pathogens makes its evolutionary dynamics exceptionally relevant to ecology, population biology, and conservation studies. The black muntjac is a rare deer endemic to a small mountainous region in eastern China. We found that this species has two DQA loci through cDNA expression and sequence variation analysis. The level of variation at both DQA loci was found to be extremely low (three alleles for DQA1 and four alleles for DQA2), possibly because of past bottlenecks and the species' relatively solitary behavior pattern. The ratio of d N /d S in the putative peptide binding region of the DQA2 locus (13.36, P = 0.012) was significantly larger than one but not that of DQA1 (0.94, P = 0.95), suggesting strong positive selection at the DQA2 but not at the DQA1 locus. This difference might reflect different sets of evolutionary selection pressures acting on the two loci. The phylogenetic tree showed that DQA1 alleles from two species of Cervidae and two of Bovidae grouped together, as did the DQA2 alleles. However, different genes from the four species were located in separate branches. These results lead us to suggest that these DQA alleles are derived from primordial DQA genes ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 11 (3): 2888-2898 (2012) Genetic variation of MHC-DQA in black muntjac 2889 from a common ancestor and are maintained in Cervidae and Bovidae since their divergence around 25.5-27.8 million years ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.