Senescence-accelerated mice (SAM) strains are useful models to understand the mechanisms of age-dependent degeneration. In this study, measurements of the mitochondrial membrane potential (Deltapsi(m)) of platelets and the Adenosine 5(')-triphosphate (ATP) content of hippocampi and platelets were made, and platelet mitochondria were observed in SAMP8 (faster aging mice) and SAMR1 (aging resistant control mice) at 2, 6 and 9 months of age. In addition, an Abeta-induced (Amyloid beta-protein) damage model of platelets was established. After the addition of Abeta, the Deltapsi(m) of platelets of SAMP8 at 1 and 6 months of age were measured. We found that platelet Deltapsi(m), and hippocampal and platelet ATP content of SAMP8 mice decreased at a relatively early age compared with SAMR1. The platelets of 6 month-old SAMP8 showed a tolerance to Abeta-induced damages. These results suggest that mitochondrial dysfunction might be one of the mechanisms leading to age-associated degeneration in SAMP mice at an early age and the platelets could serve as a biomarker for detection of mitochondrial function and age related disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.