Commercialization of cellulose nanocrystals (CNC) presents opportunities for a wide range of new products. Techno‐economic assessments can provide insightful information for the efficient design of conversion processes, drive cost‐saving efforts, and reduce financial risks. In this study, we conducted techno‐economic assessments for CNC production using information from the USDA Forest Products Laboratory Pilot Plant, literature, and discussions with experts. Scenarios considered included variations related to greenfield, co‐location, and acid recovery. Operating costs, capital investment, minimum product selling price (MPSP), financial performance metrics, and the effect of drying and higher reaction yields on CNC manufacturing financials were estimated for each scenario. The lowest MPSP was found for the co‐location without acid recovery scenario, mainly driven by capital investment. Risk analysis indicates 95% probability of manufacturing costs lower than USD 5900/t of CNC (dry equivalent) and a MPSP lower than USD 7200/t of CNC (dry equivalent). Finally, based on our analysis, we provide guidance on process optimizations that can improve the economic performance of CNC manufacturing process. In addition, a risk profile of the CNC manufacturing business is provided. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd
Nanocellulose provides a new materials platform for the sustainable production of high-performance nano-enabled products in an array of applications. In this paper, potential applications for cellulose nanomaterials are identified as the first step toward estimating market volume. The overall study, presented in two parts, estimates market volume on the basis of estimated tonnage of cellulose nanomaterials rather than the dollar value of production or profits from production. In this paper, we first identified potential uses from literature, presentations, and patent reviews, and then categorized these under the broad headings of high-volume, low-volume, and emerging/novel applications. For each application, the rationale for using nanocellulose is explained. The companion paper, Part 2, explains the assumptions and calculation of application-specific market estimates. High- and low-volume consumption applications of cellulose nanomaterials were identified from published data as well as expert input. We categorized potential market sizes as high or low by considering applications where cellulose nanomaterials would replace existing materials and be used at a published or estimated rate for some fraction of an entire existing market. Novel applications for cellulose nanomaterials that are presently considered niche markets are also identified, but volumes were not estimated because of a lack of published supporting data. Annual U.S. market potential for identified applications of nanocellulose is estimated as 6.4 million metric tons, with a global market potential of 35 million metric tons. The greatest volume potential for use of cellulose nanomaterials is currently in paper and packaging applications. Other potentially high-volume uses are in the automotive, construction, personal care, and textile sectors.
Conversion economics, risk, and financial analyses for an industrial facility manufacturing cellulose micro‐ and nanofibrils (CMNF) from wood pulp is presented. Process data is based on mass and energy balances from a pilot facility in the University of Maine. Here, CMNF is produced from untreated wood pulp by using disk refining, with an assumed production capacity of 50 t (dry metric ton equivalent) per day. Stand‐alone and co‐location manufacturing facilities were simulated and assessed. Minimum product selling prices (MPSP, estimated to achieve a 16% hurdle rate) for different scenarios ranged from USD 1893/t CMNF to USD 2440/t CMNF (dry equivalent). Pulp and energy consumption were identified as major cost drivers. Consequently, it was found that the use of alternative feedstock, in addition to co‐location configuration, can reduce MPSP by 37%. Since estimated MPSP of CMNF is lower than cellulose nanocrystals (CNC) – both estimated to achieve a 16% hurdle rate, we believe market adoption of CMNF in the near term is more promising, regardless of specific applications. This study provides state of the art business intelligence information on the conversion economics, risk, and financial analyses for CMNF manufacturing. Thus, the data represents valuable information to entrepreneurs, R&D scientists, and product developers who plan to adopt CMNF in their processes and products. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd
Nanocellulose has enormous potential to provide an important materials platform in numerous product sectors. This study builds on previous work by the same authors in which likely high-volume, low-volume, and novel applications for cellulosic nanomaterials were identified. In particular, this study creates a transparent methodology and estimates the potential annual tonnage requirements for nanocellulose in the previously identified applications in the United States (U.S.). High, average, and low market penetration estimates are provided for each application. Published data sources of materials use in the various applications provide the basis for estimating nanocellulose market size. Annual U.S. market potential for high-volume applications of nanocellulose is estimated at 6 million metric tons, based on current markets and middle market penetration estimates. The largest uses for nanocellulose are projected to be in packaging (2.0 million metric tons), paper (1.5 million metric tons), and plastic film applications (0.7 million metric tons). Cement has a potential nanocellulose market size of over 4 million metric tons on a global basis, but the U.S. market share estimated for cement is 21,000 metric tons, assuming market penetration is initially limited to the ultra-high performance concrete market. Total annual consumption of nanocellulose for low-volume applications is less than 10% of the high-volume applications. Estimates for nanocellulose use in emerging novel applications were not made because these applications generally have yet to come to market. The study found that the majority of the near-term market potential for nanocellulose appears to be in its fibrillar versus crystalline form. Market size estimates exceed three prior estimates for nanocellulose applications, but the methodologies for those studies are not transparent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.